Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Synthesis of hollow TiO2@N-doped carbon with enhanced electrochemical capacitance by an in situ hydrothermal process using hexamethylenetetramine

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Jung Ho-
dc.contributor.authorBhattacharjya, Dhrubajyoti-
dc.contributor.authorYu, Jong-Sung-
dc.date.accessioned2021-09-05T17:07:55Z-
dc.date.available2021-09-05T17:07:55Z-
dc.date.created2021-06-15-
dc.date.issued2014-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/101095-
dc.description.abstractA unique and novel soft template-based hydrothermal approach was developed for the synthesis of hollow TiO2 and hollow TiO2@ N-doped carbon. The synthesis strategy involves the slow hydrolysis of hexamethylenetetramine (HMTA) at 100 degrees C in the presence of a block copolymer (Pluronic F127) as the surfactant, resorcinol as the polymer precursor and titanium salt as the metal oxide precursor to form a hollow composite nanostructure consisting of TiO2 nanoparticles (NPs) covered with a resorcinol-formaldehyde (RF) polymer shell. Hydrolysis of HMTA provides a gradual and controlled supply of hydroxide ions, formaldehyde and ammonia. The resulting ammonia initiates the polymerization reaction of the generated formaldehyde with resorcinol to produce an RF-polymer framework over the TiO2 NPs thereby generating TiO2@ RF polymer particles, which in turn self-assemble to form a hollow TiO2@ RF polymer composite nanostructure. Subsequent pyrolysis under an N-2 atmosphere produces a hollow TiO2 nanostructure covered with a thin layer of N-doped carbon. The resulting novel nanostructure not only possesses a high surface area of 310 m(2) g(-1), but also provides a protective N-doped carbon layer. As a result, this hollow TiO2@ N-doped carbon material demonstrates high potential as an electrode material for use as an electrochemical capacitor with high specific capacitance and high durability. Interestingly, this work proceeds through a very effective, simple one-pot synthesis route to generate novel hollow TiO2 composite structures, and will enable the synthesis of various active hollow metal oxide@ N-doped carbon and/or hollow organic-inorganic hydride nanocomposite materials for many possible applications.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectVISIBLE-LIGHT PHOTOCATALYSIS-
dc.subjectTIO2 NANOTUBE ARRAYS-
dc.subjectENERGY-STORAGE-
dc.subjectHIGH-PERFORMANCE-
dc.subjectCHARGE STORAGE-
dc.subjectHIERARCHICAL NANOARCHITECTURE-
dc.subjectSUPERCAPACITOR ELECTRODES-
dc.subjectPHASE-TRANSFORMATION-
dc.subjectOXIDE NANOWIRES-
dc.subjectLOW-TEMPERATURE-
dc.titleSynthesis of hollow TiO2@N-doped carbon with enhanced electrochemical capacitance by an in situ hydrothermal process using hexamethylenetetramine-
dc.typeArticle-
dc.contributor.affiliatedAuthorYu, Jong-Sung-
dc.identifier.doi10.1039/c4ta00928b-
dc.identifier.scopusid2-s2.0-84903749353-
dc.identifier.wosid000339004100057-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS CHEMISTRY A, v.2, no.29, pp.11472 - 11479-
dc.relation.isPartOfJOURNAL OF MATERIALS CHEMISTRY A-
dc.citation.titleJOURNAL OF MATERIALS CHEMISTRY A-
dc.citation.volume2-
dc.citation.number29-
dc.citation.startPage11472-
dc.citation.endPage11479-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusVISIBLE-LIGHT PHOTOCATALYSIS-
dc.subject.keywordPlusTIO2 NANOTUBE ARRAYS-
dc.subject.keywordPlusENERGY-STORAGE-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusCHARGE STORAGE-
dc.subject.keywordPlusHIERARCHICAL NANOARCHITECTURE-
dc.subject.keywordPlusSUPERCAPACITOR ELECTRODES-
dc.subject.keywordPlusPHASE-TRANSFORMATION-
dc.subject.keywordPlusOXIDE NANOWIRES-
dc.subject.keywordPlusLOW-TEMPERATURE-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Material Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE