Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Numerical investigations on self-similar solutions of the nonlinear diffusion equation

Full metadata record
DC Field Value Language
dc.contributor.authorLi, Yibao-
dc.contributor.authorKim, Junseok-
dc.date.accessioned2021-09-05T19:27:35Z-
dc.date.available2021-09-05T19:27:35Z-
dc.date.created2021-06-15-
dc.date.issued2013-11-
dc.identifier.issn0997-7546-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/101662-
dc.description.abstractIn this paper, we present the numerical investigations of self-similar solutions for the nonlinear diffusion equation h(t) = -(h(3)h(xxx))(x), which arises in the context of surface-tension-driven flow of a thin viscous liquid film. Here, h = h(x, t) is the liquid film height. A self-similar solution is h(x, t) = h(alpha(t)(x - x(0)) + x(0), t(0)) = f(alpha(t)(x - x(0))) and alpha(t) = [1 - 4A(t - t(0))](-1/4), where A and x(0) are constants and t(0) is a reference time. To discretize the governing equation, we use the Crank-Nicolson finite difference method, which is second-order accurate in time and space. The resulting discrete system of equations is solved by a nonlinear multigrid method. We also present efficient and accurate numerical algorithms for calculating the constants, A, x(0), and t(0). To find a self-similar solution for the equation, we numerically solve the partial differential equation with a simple step-function-like initial condition until the solution reaches the reference time to. Then, we take h(x, t(0)) as the self-similar solution f(x). Various numerical experiments are performed to show that f(x) is indeed a self-similar solution. (C) 2013 Elsevier Masson SAS. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectTHIN-FILM-
dc.subjectLINEAR-STABILITY-
dc.subjectMESH REFINEMENT-
dc.subjectDRIVEN-
dc.subjectFLOW-
dc.subjectINSTABILITIES-
dc.subjectSIMULATION-
dc.subjectSCHEMES-
dc.titleNumerical investigations on self-similar solutions of the nonlinear diffusion equation-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Junseok-
dc.identifier.doi10.1016/j.euromechflu.2013.05.003-
dc.identifier.scopusid2-s2.0-84882449695-
dc.identifier.wosid000324283700004-
dc.identifier.bibliographicCitationEUROPEAN JOURNAL OF MECHANICS B-FLUIDS, v.42, pp.30 - 36-
dc.relation.isPartOfEUROPEAN JOURNAL OF MECHANICS B-FLUIDS-
dc.citation.titleEUROPEAN JOURNAL OF MECHANICS B-FLUIDS-
dc.citation.volume42-
dc.citation.startPage30-
dc.citation.endPage36-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMechanics-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.relation.journalWebOfScienceCategoryPhysics, Fluids & Plasmas-
dc.subject.keywordPlusTHIN-FILM-
dc.subject.keywordPlusLINEAR-STABILITY-
dc.subject.keywordPlusMESH REFINEMENT-
dc.subject.keywordPlusDRIVEN-
dc.subject.keywordPlusFLOW-
dc.subject.keywordPlusINSTABILITIES-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordPlusSCHEMES-
dc.subject.keywordAuthorThin film-
dc.subject.keywordAuthorNonlinear multigrid method-
dc.subject.keywordAuthorSelf-similar solution-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Mathematics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jun seok photo

Kim, Jun seok
이과대학 (수학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE