Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Machine learning of molecular electronic properties in chemical compound space

Full metadata record
DC Field Value Language
dc.contributor.authorMontavon, Gregoire-
dc.contributor.authorRupp, Matthias-
dc.contributor.authorGobre, Vivekanand-
dc.contributor.authorVazquez-Mayagoitia, Alvaro-
dc.contributor.authorHansen, Katja-
dc.contributor.authorTkatchenko, Alexandre-
dc.contributor.authorMueller, Klaus-Robert-
dc.contributor.authorvon Lilienfeld, O. Anatole-
dc.date.accessioned2021-09-05T21:52:30Z-
dc.date.available2021-09-05T21:52:30Z-
dc.date.created2021-06-15-
dc.date.issued2013-09-04-
dc.identifier.issn1367-2630-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/102182-
dc.description.abstractThe combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a 'quantum machine' is similar, and sometimes superior, to modern quantum-chemical methods-at negligible computational cost.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherIOP PUBLISHING LTD-
dc.subjectPOTENTIAL-ENERGY SURFACES-
dc.subjectINTERMEDIATE NEGLECT-
dc.subjectVIRTUAL EXPLORATION-
dc.subjectUNIVERSE-
dc.subjectAPPROXIMATION-
dc.subjectDESCRIPTORS-
dc.subjectSMILES-
dc.subjectDEEP-
dc.subjectQSAR-
dc.titleMachine learning of molecular electronic properties in chemical compound space-
dc.typeArticle-
dc.contributor.affiliatedAuthorMueller, Klaus-Robert-
dc.identifier.doi10.1088/1367-2630/15/9/095003-
dc.identifier.scopusid2-s2.0-84885045537-
dc.identifier.wosid000323920600003-
dc.identifier.bibliographicCitationNEW JOURNAL OF PHYSICS, v.15-
dc.relation.isPartOfNEW JOURNAL OF PHYSICS-
dc.citation.titleNEW JOURNAL OF PHYSICS-
dc.citation.volume15-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryPhysics, Multidisciplinary-
dc.subject.keywordPlusPOTENTIAL-ENERGY SURFACES-
dc.subject.keywordPlusINTERMEDIATE NEGLECT-
dc.subject.keywordPlusVIRTUAL EXPLORATION-
dc.subject.keywordPlusUNIVERSE-
dc.subject.keywordPlusAPPROXIMATION-
dc.subject.keywordPlusDESCRIPTORS-
dc.subject.keywordPlusSMILES-
dc.subject.keywordPlusDEEP-
dc.subject.keywordPlusQSAR-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE