Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies

Full metadata record
DC Field Value Language
dc.contributor.authorHansen, Katja-
dc.contributor.authorMontavon, Gregoire-
dc.contributor.authorBiegler, Franziska-
dc.contributor.authorFazli, Siamac-
dc.contributor.authorRupp, Matthias-
dc.contributor.authorScheffler, Matthias-
dc.contributor.authorvon Lilienfeld, O. Anatole-
dc.contributor.authorTkatchenko, Alexandre-
dc.contributor.authorMueller, Klaus-Robert-
dc.date.accessioned2021-09-05T23:16:18Z-
dc.date.available2021-09-05T23:16:18Z-
dc.date.created2021-06-14-
dc.date.issued2013-08-
dc.identifier.issn1549-9618-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/102577-
dc.description.abstractThe accurate and reliable prediction of properties of molecules typically requires computationally intensive quantum-chemical calculations. Recently, machine learning techniques applied to ab initio calculations have been proposed as an efficient approach for describing the energies of molecules in their given ground-state structure throughout chemical compound space (Rupp et al. Phys. Rev. Lett. 2012, 108, 058301). In this paper we outline a number of established machine learning techniques and investigate the influence of the molecular representation on the methods performance. The best methods achieve prediction errors of 3 kcal/mol for the atomization energies of a wide variety of molecules. Rationales for this performance improvement are given together with pitfalls and challenges when applying machine learning approaches to the prediction of quantum-mechanical observables.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.subjectMIXED-EFFECTS MODELS-
dc.subjectDEEP-
dc.subjectSURFACES-
dc.subjectREGRESSION-
dc.subjectSELECTION-
dc.subjectBIAS-
dc.titleAssessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies-
dc.typeArticle-
dc.contributor.affiliatedAuthorFazli, Siamac-
dc.contributor.affiliatedAuthorMueller, Klaus-Robert-
dc.identifier.doi10.1021/ct400195d-
dc.identifier.scopusid2-s2.0-84882415695-
dc.identifier.wosid000323193500015-
dc.identifier.bibliographicCitationJOURNAL OF CHEMICAL THEORY AND COMPUTATION, v.9, no.8, pp.3404 - 3419-
dc.relation.isPartOfJOURNAL OF CHEMICAL THEORY AND COMPUTATION-
dc.citation.titleJOURNAL OF CHEMICAL THEORY AND COMPUTATION-
dc.citation.volume9-
dc.citation.number8-
dc.citation.startPage3404-
dc.citation.endPage3419-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryPhysics, Atomic, Molecular & Chemical-
dc.subject.keywordPlusMIXED-EFFECTS MODELS-
dc.subject.keywordPlusDEEP-
dc.subject.keywordPlusSURFACES-
dc.subject.keywordPlusREGRESSION-
dc.subject.keywordPlusSELECTION-
dc.subject.keywordPlusBIAS-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Brain and Cognitive Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE