Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

In Situ Heating Transmission Electron Microscopy Observation of Nanoeutectic Lamellar Structure in Sn-Ag-Cu Alloy on Au Under-Bump Metallization

Authors
Seo, Jong-HyunYoon, Sang-WonKim, Kyou-HyunChang, Hye-JungLee, Kon-BaeSeong, Tae-YeonFleury, EricAhn, Jae-Pyoung
Issue Date
8월-2013
Publisher
CAMBRIDGE UNIV PRESS
Keywords
in situ heating; Sn-Ag-Cu solder; UBM; microstructure; TEM; STEM
Citation
MICROSCOPY AND MICROANALYSIS, v.19, pp.49 - 53
Indexed
SCIE
SCOPUS
Journal Title
MICROSCOPY AND MICROANALYSIS
Volume
19
Start Page
49
End Page
53
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/102609
DOI
10.1017/S1431927613012312
ISSN
1431-9276
Abstract
We investigated the microstructural evolution of Sn96.4Ag2.8Cu0.8 solder through in situ heating transmission electron microscopy observations. As-soldered bump consisted of seven layers, containing the nanoeutectic lamella structure of AuSn and Au5Sn phases, and the polygonal grains of AuSn2 and AuSn4, on Au-plated Cu bond pads. Here, we found that there are two nanoeutectic lamellar layers with lamella spacing of 40 and 250 nm. By in situ heating above 140 degrees C, the nanoeutectic lamella of AuSn and Au5Sn was decomposed with structural degradation by sphering and coarsening processes of the lamellar interface. At the third layer neighboring to the lamella layer, on the other hand, Au5Sn particles with a zig-zag shape in AuSn matrix became spherical and were finally dissipated in order to minimize the interface energy between two phases. In the other layers except both lamella layers, polycrystal grains of AuSn2 and AuSn4 grew by normal grain growth during in situ heating. The high interface energy of nanoeutectic lamella and polygonal nanograins, which are formed by rapid solidification, acted as a principal driving force on the microstructural change during the in situ heating.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher SEONG, TAE YEON photo

SEONG, TAE YEON
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE