Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Nanophotonics and Nanochemistry: Controlling the Excitation Dynamics for Frequency Up- and Down-Conversion in Lanthanide-Doped Nanoparticles

Authors
Chen, GuanyingYang, ChunhuiPrasad, Paras N.
Issue Date
16-7월-2013
Publisher
AMER CHEMICAL SOC
Citation
ACCOUNTS OF CHEMICAL RESEARCH, v.46, no.7, pp.1474 - 1486
Indexed
SCIE
SCOPUS
Journal Title
ACCOUNTS OF CHEMICAL RESEARCH
Volume
46
Number
7
Start Page
1474
End Page
1486
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/102700
DOI
10.1021/ar300270y
ISSN
0001-4842
Abstract
Nanophotonics is an emerging science dealing with the Interaction of light and matter on a nanometer scale and holds promise to produce new generation nanophosphors with highly efficient frequency conversion of infrared (IR) light. Scientists can control the excitation dynamics by using nanochemistry to produce hierarchically built nanostructures and tailor their interfaces. These nanophosphors can either perform frequency up-conversion from IR to visible or ultraviolet (UV) or down-conversion, which results in the IR light being further red shifted. Nanophotonics and nanochemistry open up numerous opportunities for these photon converters, including in high contrast bioimaging photodynamic therapy, drug release and gene delivery, nanothermometry, and solar cells. Applications of these nanophosphors in these directions derive from three main stimuli. Light excitation and emission within the near-infrared (NIR) "optical transparency window" of tissues is ideal for high contrast In vitro and In vivo imaging. This is due to low natural florescence, reduced scattering background, and deep penetration in tissues. Secondly, the naked eye is highly sensitive in the visible range, but it has no response to IR light. Therefore, many scientists have interest in the frequency up-conversion of IR wavelengths for security and display applications. Lastly, frequency up-conversion can convert IR photons to higher energy photons, which can then readily be absorbed by solar materials. Current solar devices do not use abundant IR light that comprises almost half of solar energy. In this Account, we present our recent work on nanophotonic control of frequency up- and down-conversion in fluoride nanophosphors, and their biophotonic and nanophotonic applications. Through nanoscopic control of phonon dynamics, electronic energy transfer, local crystal field, and surface-induced non-radiative processes, we were able to produce new generation nanophosphors with highly efficient frequency conversion of IR light We show that nanochemistry plays a vital role in the design and interface engineering of nanophosphors, providing pathways to expand their range of applications. High contrast in vitro and in vivo NIR-to-NIR up- and down-conversion bioimaging were successfully demonstrated by our group, evoking wide interests along this line. We introduced trivalent gadolinium ions into the lattice of the nanophosphors or into the shell layer of nanophosphors in a core/shell configuration to produce novel nanophosphors for multimodal (MRI and optical) imaging. We also demonstrate the security and display applications using photopatternable NIR-to-NIR and NIR-to-visible frequency up-conversion nanophosphors with appropriately engineered surface chemistry. In addition, we present preliminary results on dye-sensitized solar cells using up-conversion in fluoride lattice-based nanophosphors for IR photon harvesting.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE