Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Effect of multi-walled carbon nanotube dispersion on the electrical and rheological properties of poly(propylene carbonate)/poly(lactic acid)/multi-walled carbon nanotube composites

Authors
Park, Dong HyupKan, Tae GyuLee, Yun KyunKim, Woo Nyon
Issue Date
1월-2013
Publisher
SPRINGER
Citation
JOURNAL OF MATERIALS SCIENCE, v.48, no.1, pp.481 - 488
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF MATERIALS SCIENCE
Volume
48
Number
1
Start Page
481
End Page
488
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/104338
DOI
10.1007/s10853-012-6762-y
ISSN
0022-2461
Abstract
In this study, the morphological, electrical, and rheological properties of the poly(propylene carbonate) (PPC)/poly(lactic acid) (PLA)/multi-walled carbon nanotube (MWCNT) composites were investigated. From the results of transmission electron microscopy of the PPC/PLA/MWCNT composites, the MWCNT preferred to locate more in the PPC phase than in the PLA phase. This maybe due to the lower interfacial tension of the PPC/MWCNT composites compared to that of the PLA/MWCNT composites. The electrical conductivities of the PPC/PLA/MWCNT composites were higher than those of the PPC/MWCNT and the PLA/MWCNT composites, which was likely due to the selective localization of the MWCNT in the PPC phase (continuous phase). From the results of the complex viscosity of the composites, the ratio of increasing the complex viscosity of the PPC/MWCNT composites with the MWCNT content was higher than that of the PLA/MWCNT composites. This is maybe due to the fact that the MWCNT dispersion in the PPC phase was higher than in the PLA phase. The results from the morphology, electrical conductivity, and complex viscosity of the PPC/PLA/MWCNT composites suggest that the selective localization of the MWCNT in the PPC phase can improve the conductive path and increase the electrical conductivity of the PPC/PLA/MWCNT composites.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE