Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Remarkable Solvent, Porphyrin Ligand, and Substrate Effects on Participation of Multiple Active Oxidants in Manganese(III) Porphyrin Catalyzed Oxidation Reactions

Full metadata record
DC Field Value Language
dc.contributor.authorHyun, Min Young-
dc.contributor.authorJo, Young Dan-
dc.contributor.authorLee, Jun Ho-
dc.contributor.authorLee, Hong Gyu-
dc.contributor.authorPark, Hyun Min-
dc.contributor.authorHwang, In Hong-
dc.contributor.authorKim, Kyeong Beom-
dc.contributor.authorLee, Suk Joong-
dc.contributor.authorKim, Cheal-
dc.date.accessioned2021-09-06T05:56:15Z-
dc.date.available2021-09-06T05:56:15Z-
dc.date.created2021-06-14-
dc.date.issued2013-01-
dc.identifier.issn0947-6539-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/104398-
dc.description.abstractThe participation of multiple active oxidants generated from the reactions of two manganese(III) porphyrin complexes containing electron-withdrawing and -donating substituents with peroxyphenylacetic acid (PPAA) as a mechanistic probe was studied by carrying out catalytic oxidations of cyclohexene, 1-octene, and ethylbenzene in various solvent systems, namely, toluene, CH2Cl2, CH3CN, and H2O/CH3CN (1:4). With an increase in the concentration of the easy-to-oxidize substrate cyclohexene in the presence of [(TMP)MnCl] (1?a) with electron-donating substituents, the ratio of heterolysis to homolysis increased gradually in all solvent systems, suggesting that [(TMP)Mn?OOC(O)R] species 2?a is the major active species. When the substrate was changed from the easy-to-oxidize one (cyclohexene) to difficult-to-oxidize ones (1-octene and ethylbenzene), the ratio of heterolysis to homolysis increased a little or did not change. [(F20TPP)Mn?OOC(O)R] species 2?b generated from the reaction of [(F20TPP)MnCl] (1?b) with electron-withdrawing substituents and PPAA also gradually becomes involved in olefin epoxidation (although to a much lesser degree than with [(TMP)Mn?OOR] 2?a) depending on the concentration of the easy-to-oxidize substrate cyclohexene in all aprotic solvent systems except for CH3CN, whereas MnV?O species is the major active oxidant in the protic solvent system. With difficult-to-oxidize substrates, the ratio of heterolysis to homolysis did not vary except for 1-octene in toluene, indicating that a MnV?O intermediate generated from the heterolytic cleavage of 2?b becomes a major reactive species. We also studied the competitive epoxidations of cis-2-octene and trans-2-octene with two manganese(III) porphyrin complexes by meta-chloroperbenzoic acid (MCPBA) in various solvents under catalytic reaction conditions. The ratios of cis- to trans-2-octene oxide formed in the reactions of MCPBA varied depending on the substrate concentration, further supporting the contention that the reactions of manganese porphyrin complexes with peracids generate multiple reactive oxidizing intermediates.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectO BOND-CLEAVAGE-
dc.subjectOXYGEN-ATOM TRANSFER-
dc.subjectFLASH-PHOTOLYSIS GENERATION-
dc.subjectMN-V-OXO-
dc.subjectOLEFIN EPOXIDATION-
dc.subjectHYDROGEN-PEROXIDE-
dc.subjectMN-III(SALEN)-CATALYZED EPOXIDATION-
dc.subjectIRON(III) PORPHYRINS-
dc.subjectALKYL HYDROPEROXIDES-
dc.subjectRATE CONSTANTS-
dc.titleRemarkable Solvent, Porphyrin Ligand, and Substrate Effects on Participation of Multiple Active Oxidants in Manganese(III) Porphyrin Catalyzed Oxidation Reactions-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Suk Joong-
dc.identifier.doi10.1002/chem.201202640-
dc.identifier.scopusid2-s2.0-84872698630-
dc.identifier.wosid000313787700039-
dc.identifier.bibliographicCitationCHEMISTRY-A EUROPEAN JOURNAL, v.19, no.5, pp.1810 - 1818-
dc.relation.isPartOfCHEMISTRY-A EUROPEAN JOURNAL-
dc.citation.titleCHEMISTRY-A EUROPEAN JOURNAL-
dc.citation.volume19-
dc.citation.number5-
dc.citation.startPage1810-
dc.citation.endPage1818-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.subject.keywordPlusO BOND-CLEAVAGE-
dc.subject.keywordPlusOXYGEN-ATOM TRANSFER-
dc.subject.keywordPlusFLASH-PHOTOLYSIS GENERATION-
dc.subject.keywordPlusMN-V-OXO-
dc.subject.keywordPlusOLEFIN EPOXIDATION-
dc.subject.keywordPlusHYDROGEN-PEROXIDE-
dc.subject.keywordPlusMN-III(SALEN)-CATALYZED EPOXIDATION-
dc.subject.keywordPlusIRON(III) PORPHYRINS-
dc.subject.keywordPlusALKYL HYDROPEROXIDES-
dc.subject.keywordPlusRATE CONSTANTS-
dc.subject.keywordAuthormanganese-
dc.subject.keywordAuthoroxidation-
dc.subject.keywordAuthoroxido ligands-
dc.subject.keywordAuthorporphyrinoids-
dc.subject.keywordAuthorsolvent effects-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Suk Joong photo

Lee, Suk Joong
이과대학 (화학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE