Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Algebraic Geometric Comparison of Probability Distributions

Full metadata record
DC Field Value Language
dc.contributor.authorKiraly, Franz J.-
dc.contributor.authorvon Buenau, Paul-
dc.contributor.authorMeinecke, Frank C.-
dc.contributor.authorBlythe, Duncan A. J.-
dc.contributor.authorMueller, Klaus-Robert-
dc.date.accessioned2021-09-06T08:24:25Z-
dc.date.available2021-09-06T08:24:25Z-
dc.date.issued2012-03-
dc.identifier.issn1532-4435-
dc.identifier.issn1533-7928-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/105365-
dc.description.abstractWe propose a novel algebraic algorithmic framework for dealing with probability distributions represented by their cumulants such as the mean and covariance matrix. As an example, we consider the unsupervised learning problem of finding the subspace on which several probability distributions agree. Instead of minimizing an objective function involving the estimated cumulants, we show that by treating the cumulants as elements of the polynomial ring we can directly solve the problem, at a lower computational cost and with higher accuracy. Moreover, the algebraic viewpoint on probability distributions allows us to invoke the theory of algebraic geometry, which we demonstrate in a compact proof for an identifiability criterion.-
dc.format.extent49-
dc.language영어-
dc.language.isoENG-
dc.publisherMICROTOME PUBL-
dc.titleAlgebraic Geometric Comparison of Probability Distributions-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.scopusid2-s2.0-84859464784-
dc.identifier.wosid000303772100015-
dc.identifier.bibliographicCitationJOURNAL OF MACHINE LEARNING RESEARCH, v.13, pp 855 - 903-
dc.citation.titleJOURNAL OF MACHINE LEARNING RESEARCH-
dc.citation.volume13-
dc.citation.startPage855-
dc.citation.endPage903-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaAutomation & Control Systems-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryAutomation & Control Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.subject.keywordPlusDECOMPOSITION-
dc.subject.keywordPlusIDEAL-
dc.subject.keywordAuthorcomputational algebraic geometry-
dc.subject.keywordAuthorapproximate algebra-
dc.subject.keywordAuthorunsupervised Learning-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Brain and Cognitive Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE