Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Phase-Field Models for Multi-Component Fluid Flows

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Junseok-
dc.date.accessioned2021-09-06T16:10:35Z-
dc.date.available2021-09-06T16:10:35Z-
dc.date.created2021-06-18-
dc.date.issued2012-09-
dc.identifier.issn1815-2406-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/107608-
dc.description.abstractIn this paper, we review the recent development of phase-field models and their numerical methods for multi-component fluid flows with interfacial phenomena. The models consist of a Navier-Stokes system coupled with a multi-component Cahn-Hilliard system through a phase-field dependent surface tension force, variable density and viscosity, and the advection term. The classical infinitely thin boundary of separation between two immiscible fluids is replaced by a transition region of a small but finite width, across which the composition of the mixture changes continuously. A constant level set of the phase-field is used to capture the interface between two immiscible fluids. Phase-field methods are capable of computing topological changes such as splitting and merging, and thus have been applied successfully to multi-component fluid flows involving large interface deformations. Practical applications are provided to illustrate the usefulness of using a phase-field method. Computational results of various experiments show the accuracy and effectiveness of phase-field models.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherGLOBAL SCIENCE PRESS-
dc.subjectCAHN-HILLIARD EQUATION-
dc.subjectTENSION FORCE FORMULATION-
dc.subjectADAPTIVE MESH REFINEMENT-
dc.subjectDIFFUSE-INTERFACE METHOD-
dc.subjectLEVEL SET APPROACH-
dc.subjectHELE-SHAW CELL-
dc.subject2-PHASE FLOWS-
dc.subjectNONUNIFORM SYSTEM-
dc.subjectPROJECTION METHOD-
dc.subjectFREE-ENERGY-
dc.titlePhase-Field Models for Multi-Component Fluid Flows-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Junseok-
dc.identifier.doi10.4208/cicp.301110.040811a-
dc.identifier.scopusid2-s2.0-84863284741-
dc.identifier.wosid000303773200002-
dc.identifier.bibliographicCitationCOMMUNICATIONS IN COMPUTATIONAL PHYSICS, v.12, no.3, pp.613 - 661-
dc.relation.isPartOfCOMMUNICATIONS IN COMPUTATIONAL PHYSICS-
dc.citation.titleCOMMUNICATIONS IN COMPUTATIONAL PHYSICS-
dc.citation.volume12-
dc.citation.number3-
dc.citation.startPage613-
dc.citation.endPage661-
dc.type.rimsART-
dc.type.docTypeReview-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryPhysics, Mathematical-
dc.subject.keywordPlusCAHN-HILLIARD EQUATION-
dc.subject.keywordPlusTENSION FORCE FORMULATION-
dc.subject.keywordPlusADAPTIVE MESH REFINEMENT-
dc.subject.keywordPlusDIFFUSE-INTERFACE METHOD-
dc.subject.keywordPlusLEVEL SET APPROACH-
dc.subject.keywordPlusHELE-SHAW CELL-
dc.subject.keywordPlus2-PHASE FLOWS-
dc.subject.keywordPlusNONUNIFORM SYSTEM-
dc.subject.keywordPlusPROJECTION METHOD-
dc.subject.keywordPlusFREE-ENERGY-
dc.subject.keywordAuthorNavier-Stokes-
dc.subject.keywordAuthorCahn-Hilliard-
dc.subject.keywordAuthormulti-component-
dc.subject.keywordAuthorsurface tension-
dc.subject.keywordAuthorinterface dynamics-
dc.subject.keywordAuthorinterface capturing-
dc.subject.keywordAuthorphase-field model-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Mathematics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jun seok photo

Kim, Jun seok
이과대학 (수학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE