Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Improved efficiency of InGaN/GaN-based multiple quantum well solar cells by reducing contact resistance

Full metadata record
DC Field Value Language
dc.contributor.authorSong, Jun-Hyuk-
dc.contributor.authorOh, Joon-Ho-
dc.contributor.authorShim, Jae-Phil-
dc.contributor.authorMin, Jung-Hong-
dc.contributor.authorLee, Dong-Seon-
dc.contributor.authorSeong, Tae-Yeon-
dc.date.accessioned2021-09-06T17:28:26Z-
dc.date.available2021-09-06T17:28:26Z-
dc.date.created2021-06-18-
dc.date.issued2012-08-
dc.identifier.issn0749-6036-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/107885-
dc.description.abstractWe report on the improvement in the performance of InGaN/GaN multi-quantum well-based solar cells by the introduction of a Cu-doped indium oxide (CIO) layer at the interface between indium tin oxide (ITO) p-electrode and p-GaN. The solar cell fabricated with the 3 nm-sample exhibits an external quantum efficiency of 29.8% (at a peak wavelength of 376 nm) higher than those (25.2%) of the cell with the ITO-only sample. The use of the 3-nm-thick CIO layer gives higher short circuit current density (0.72 mA/cm(2)) and fill factor (78.85%) as compared to those (0.65 mA/cm(2) and 74.08%) of the ITO only sample. Measurements show that the conversion efficiency of the solar cells with the ITO-only sample and the 3 nm-sample is 1.12% and 1.30%, respectively. Based on their electrical and optical properties, the dependence of the CIO interlayer thickness on the efficiency of solar cells is discussed. (C) 2012 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD-
dc.subjectGAN-
dc.titleImproved efficiency of InGaN/GaN-based multiple quantum well solar cells by reducing contact resistance-
dc.typeArticle-
dc.contributor.affiliatedAuthorSeong, Tae-Yeon-
dc.identifier.doi10.1016/j.spmi.2012.05.002-
dc.identifier.scopusid2-s2.0-84861834558-
dc.identifier.wosid000306727200016-
dc.identifier.bibliographicCitationSUPERLATTICES AND MICROSTRUCTURES, v.52, no.2, pp.299 - 305-
dc.relation.isPartOfSUPERLATTICES AND MICROSTRUCTURES-
dc.citation.titleSUPERLATTICES AND MICROSTRUCTURES-
dc.citation.volume52-
dc.citation.number2-
dc.citation.startPage299-
dc.citation.endPage305-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusGAN-
dc.subject.keywordAuthorInGaN-
dc.subject.keywordAuthorSolar cell-
dc.subject.keywordAuthorCu-doped indium oxide-
dc.subject.keywordAuthorOhmic contact-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher SEONG, TAE YEON photo

SEONG, TAE YEON
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE