Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Characterization of Fine Particulate Matter and Associations between Particulate Chemical Constituents and Mortality in Seoul, Korea

Full metadata record
DC Field Value Language
dc.contributor.authorSon, Ji-Young-
dc.contributor.authorLee, Jong-Tae-
dc.contributor.authorKim, Ki-Hyun-
dc.contributor.authorJung, Kweon-
dc.contributor.authorBell, Michelle L.-
dc.date.accessioned2021-09-06T19:27:57Z-
dc.date.available2021-09-06T19:27:57Z-
dc.date.created2021-06-18-
dc.date.issued2012-06-
dc.identifier.issn0091-6765-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/108356-
dc.description.abstractBACKGROUND: Numerous studies have linked fine particles [<= 2.5 mu m in aerodynamic diameter (PM2.5)] and health. Most studies focused on the total mass of the particles, although the chemical composition of the particles varies substantially. Which chemical components of fine particles that are the most harmful is not well understood, and research on the chemical composition of PM2.5 and the components that are the most harmful is particularly limited in Asia. OBJECTIVES: We characterized PM2.5 chemical composition and estimated the effects of cause-specific mortality of PM2.5 mass and constituents in Seoul, Korea. We compared the chemical composition of particles to those of the eastern and western United States. METHODS: We examined temporal variability of PM2.5 mass and its composition using hourly data. We applied an overdispersed Poisson generalized linear model, adjusting for time, day of week, temperature, and relative humidity to investigate the association between risk of mortality and PM2.5 mass and its constituents in Seoul, Korea, for August 2008 through October 2009. RESULTS: PM2.5 and chemical components exhibited temporal patterns by time of day and season. The chemical characteristics of Seoul's PM2.5 were more similar to PM2.5 found in the western United States than in the eastern United States. Seoul's PM2.5 had lower sulfate (SO4) contributions and higher nitrate (NO3) contributions than that of the eastern United States, although overall PM2.5 levels in Seoul were higher than in the United States. An interquartile range (IQR) increase in magnesium (Mg) (0.05 mu g/m(3)) was associated with a 1.4% increase (95% confidence interval: 0.2%, 2.6%) in total mortality on the following day. Several components that were among the largest contributors to PM2.5 total mass-NO3, SO4, and ammonium (NH4)-were moderately associated with same-day cardiovascular mortality at the p < 0.10 level. Other components with smaller mass contributions [Mg and chlorine (Cl)] exhibited moderate associations with respiratory mortality on the following day (p < 0.10). CONCLUSIONS: Our findings link PM2.5 constituents with mortality and have implications for policy making on sources of PM2.5 and on the relevance of PM2.5 health studies from other areas to this region.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherUS DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE-
dc.subjectAIR-POLLUTION-
dc.subjectHOSPITAL ADMISSIONS-
dc.subjectASIAN DUST-
dc.subjectUNITED-STATES-
dc.subjectTIME-SERIES-
dc.subjectPM2.5-
dc.subjectCOMPONENTS-
dc.subjectPARTICLES-
dc.titleCharacterization of Fine Particulate Matter and Associations between Particulate Chemical Constituents and Mortality in Seoul, Korea-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Jong-Tae-
dc.identifier.doi10.1289/ehp.1104316-
dc.identifier.scopusid2-s2.0-84862025112-
dc.identifier.wosid000304765700028-
dc.identifier.bibliographicCitationENVIRONMENTAL HEALTH PERSPECTIVES, v.120, no.6, pp.872 - 878-
dc.relation.isPartOfENVIRONMENTAL HEALTH PERSPECTIVES-
dc.citation.titleENVIRONMENTAL HEALTH PERSPECTIVES-
dc.citation.volume120-
dc.citation.number6-
dc.citation.startPage872-
dc.citation.endPage878-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.relation.journalResearchAreaPublic, Environmental & Occupational Health-
dc.relation.journalResearchAreaToxicology-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalWebOfScienceCategoryPublic, Environmental & Occupational Health-
dc.relation.journalWebOfScienceCategoryToxicology-
dc.subject.keywordPlusAIR-POLLUTION-
dc.subject.keywordPlusHOSPITAL ADMISSIONS-
dc.subject.keywordPlusASIAN DUST-
dc.subject.keywordPlusUNITED-STATES-
dc.subject.keywordPlusTIME-SERIES-
dc.subject.keywordPlusPM2.5-
dc.subject.keywordPlusCOMPONENTS-
dc.subject.keywordPlusPARTICLES-
dc.subject.keywordAuthorchemical constituents-
dc.subject.keywordAuthormortality-
dc.subject.keywordAuthorPM2.5-
dc.subject.keywordAuthortime-series-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Public Health Sciences > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Jong Tae photo

Lee, Jong Tae
보건과학과
Read more

Altmetrics

Total Views & Downloads

BROWSE