Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Optimizing transition states via kernel-based machine learning

Full metadata record
DC Field Value Language
dc.contributor.authorPozun, Zachary D.-
dc.contributor.authorHansen, Katja-
dc.contributor.authorSheppard, Daniel-
dc.contributor.authorRupp, Matthias-
dc.contributor.authorMueller, Klaus-Robert-
dc.contributor.authorHenkelman, Graeme-
dc.date.accessioned2021-09-06T19:55:41Z-
dc.date.available2021-09-06T19:55:41Z-
dc.date.created2021-06-18-
dc.date.issued2012-05-07-
dc.identifier.issn0021-9606-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/108441-
dc.description.abstractWe present a method for optimizing transition state theory dividing surfaces with support vector machines. The resulting dividing surfaces require no a priori information or intuition about reaction mechanisms. To generate optimal dividing surfaces, we apply a cycle of machine-learning and refinement of the surface by molecular dynamics sampling. We demonstrate that the machine-learned surfaces contain the relevant low-energy saddle points. The mechanisms of reactions may be extracted from the machine-learned surfaces in order to identify unexpected chemically relevant processes. Furthermore, we show that the machine-learned surfaces significantly increase the transmission coefficient for an adatom exchange involving many coupled degrees of freedom on a (100) surface when compared to a distance-based dividing surface. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4707167]-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER INST PHYSICS-
dc.subjectMOLECULAR-DYNAMICS-
dc.subjectSURFACE-
dc.titleOptimizing transition states via kernel-based machine learning-
dc.typeArticle-
dc.contributor.affiliatedAuthorMueller, Klaus-Robert-
dc.identifier.doi10.1063/1.4707167-
dc.identifier.scopusid2-s2.0-84862891798-
dc.identifier.wosid000303935700002-
dc.identifier.bibliographicCitationJOURNAL OF CHEMICAL PHYSICS, v.136, no.17-
dc.relation.isPartOfJOURNAL OF CHEMICAL PHYSICS-
dc.citation.titleJOURNAL OF CHEMICAL PHYSICS-
dc.citation.volume136-
dc.citation.number17-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryPhysics, Atomic, Molecular & Chemical-
dc.subject.keywordPlusMOLECULAR-DYNAMICS-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordAuthorDistance-based-
dc.subject.keywordAuthorDividing surfaces-
dc.subject.keywordAuthorLow energies-
dc.subject.keywordAuthorMachine-learning-
dc.subject.keywordAuthorPriori information-
dc.subject.keywordAuthorReaction mechanism-
dc.subject.keywordAuthorSaddle point-
dc.subject.keywordAuthorTransition state-
dc.subject.keywordAuthorTransition state theories-
dc.subject.keywordAuthorTransmission coefficients-
dc.subject.keywordAuthorLearning systems-
dc.subject.keywordAuthorMolecular dynamics-
dc.subject.keywordAuthorReaction kinetics-
dc.subject.keywordAuthorOptimization-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Brain and Cognitive Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE