Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Hofmeister anionic effects on hydration electric fields around water and peptide

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Heejae-
dc.contributor.authorLee, Hochan-
dc.contributor.authorLee, Gayeon-
dc.contributor.authorKim, Haeyoung-
dc.contributor.authorCho, Minhaeng-
dc.date.accessioned2021-09-06T22:10:39Z-
dc.date.available2021-09-06T22:10:39Z-
dc.date.created2021-06-18-
dc.date.issued2012-03-28-
dc.identifier.issn0021-9606-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/108953-
dc.description.abstractSpecific ion effects on water dynamics and local solvation structure around a peptide are important in understanding the Hofmeister series of ions and their effects on protein stability in aqueous solution. Water dynamics is essentially governed by local hydrogen-bonding interactions with surrounding water molecules producing hydration electric field on each water molecule. Here, we show that the hydration electric field on the OD bond of HOD molecule in water can be directly estimated by measuring its OD stretch infrared (IR) radiation frequency shift upon increasing ion concentration. For a variety of electrolyte solutions containing Hofmeister anions, we measured the OD stretch IR bands and estimated the hydration electric field on the OD bond to be about a hundred MV/cm with standard deviation of tens of MV/cm. As anion concentration increases from 1 to 6 M, the hydration electric field on the OD bond decreases by about 10%, indicating that the local H-bond network is partially broken by dissolved ions. However, the measured hydration electric fields on the OD bond and its fluctuation amplitudes for varying anions are rather independent on whether the anion is a kosmotrope or a chaotrope. To further examine the Hofmeister effects on H-bond solvation structure around a peptide bond, we examined the amide I' and II' mode frequencies of N-methylacetamide in various electrolyte D2O solutions. It is found that the two amide vibrational frequencies are not affected by ions, indicating that the H-bond solvation structure in the vicinity of a peptide remains the same irrespective of the concentration and character of ions. The present experimental results suggest that the Hofmeister anionic effects are not caused by direct electrostatic interactions of ions with peptide bond or water molecules in its first solvation shell. Furthermore, even though the H-bond network of water is affected by ions, thus induced change of local hydration electric field on the OD bond of HOD is not in good correlation with the well-known Hofmeister series. We anticipate that the present experimental results provide an important clue about the Hofmeister effect on protein structure and present a discussion on possible alternative mechanisms. (C) 2012 American Institute of Physics.[http://dx.doi.org/10.1063/1.3694036]-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER INST PHYSICS-
dc.subjectN-METHYLACETAMIDE-
dc.subjectHORSERADISH-PEROXIDASE-
dc.subjectMOLECULAR-DYNAMICS-
dc.subjectINFRARED-SPECTRUM-
dc.subjectMONOSUBSTITUTED AMIDES-
dc.subjectION INTERACTIONS-
dc.subjectSPECTROSCOPY-
dc.subjectPROTEIN-
dc.subjectSALTS-
dc.subjectMACROMOLECULES-
dc.titleHofmeister anionic effects on hydration electric fields around water and peptide-
dc.typeArticle-
dc.contributor.affiliatedAuthorCho, Minhaeng-
dc.identifier.doi10.1063/1.3694036-
dc.identifier.scopusid2-s2.0-84859545775-
dc.identifier.wosid000302216200044-
dc.identifier.bibliographicCitationJOURNAL OF CHEMICAL PHYSICS, v.136, no.12-
dc.relation.isPartOfJOURNAL OF CHEMICAL PHYSICS-
dc.citation.titleJOURNAL OF CHEMICAL PHYSICS-
dc.citation.volume136-
dc.citation.number12-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryPhysics, Atomic, Molecular & Chemical-
dc.subject.keywordPlusN-METHYLACETAMIDE-
dc.subject.keywordPlusHORSERADISH-PEROXIDASE-
dc.subject.keywordPlusMOLECULAR-DYNAMICS-
dc.subject.keywordPlusINFRARED-SPECTRUM-
dc.subject.keywordPlusMONOSUBSTITUTED AMIDES-
dc.subject.keywordPlusION INTERACTIONS-
dc.subject.keywordPlusSPECTROSCOPY-
dc.subject.keywordPlusPROTEIN-
dc.subject.keywordPlusSALTS-
dc.subject.keywordPlusMACROMOLECULES-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Min haeng photo

Cho, Min haeng
이과대학 (화학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE