Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Attenuation of propagating spin wave induced by layered nanostructures

Full metadata record
DC Field Value Language
dc.contributor.authorSekiguchi, K.-
dc.contributor.authorVader, T. N.-
dc.contributor.authorYamada, K.-
dc.contributor.authorFukami, S.-
dc.contributor.authorIshiwata, N.-
dc.contributor.authorSeo, S. M.-
dc.contributor.authorLee, S. W.-
dc.contributor.authorLee, K. J.-
dc.contributor.authorOno, T.-
dc.date.accessioned2021-09-06T22:13:45Z-
dc.date.available2021-09-06T22:13:45Z-
dc.date.created2021-06-18-
dc.date.issued2012-03-26-
dc.identifier.issn0003-6951-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/108965-
dc.description.abstractSpin wave attenuation in the layered left perpendicularFeNi/Ptright perpendicular(6)/FeNi thin films was investigated by the time-domain electrical measurement. The spin-wave waveform was detected with an asymmetric coplanar strip transmission line, as an induced voltage flowing into a fast oscilloscope. We report that the amplitude of a spin-wave packet was systematically changed by controlling the thickness of a platinum layer, up to a maximum change of 50%. The virtues of spin wave, ultrafast propagation velocity and non-reciprocal emission, are preserved in this manner. This means that the Pt layer can manipulate an arbitral power-level of spin-wave input signal (reliable attenuator). (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3699020]-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER INST PHYSICS-
dc.subjectFERROMAGNETIC-RESONANCE LINEWIDTH-
dc.subjectFILMS-
dc.subjectTA-
dc.subjectNM-
dc.subjectCU-
dc.titleAttenuation of propagating spin wave induced by layered nanostructures-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, K. J.-
dc.identifier.doi10.1063/1.3699020-
dc.identifier.scopusid2-s2.0-84859518725-
dc.identifier.wosid000302230800047-
dc.identifier.bibliographicCitationAPPLIED PHYSICS LETTERS, v.100, no.13-
dc.relation.isPartOfAPPLIED PHYSICS LETTERS-
dc.citation.titleAPPLIED PHYSICS LETTERS-
dc.citation.volume100-
dc.citation.number13-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusFERROMAGNETIC-RESONANCE LINEWIDTH-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusTA-
dc.subject.keywordPlusNM-
dc.subject.keywordPlusCU-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE