Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Nanofibrous gelatin-silica hybrid scaffolds mimicking the native extracellular matrix (ECM) using thermally induced phase separation

Full metadata record
DC Field Value Language
dc.contributor.authorLei, Bo-
dc.contributor.authorShin, Kwan-Ha-
dc.contributor.authorNoh, Da-Young-
dc.contributor.authorJo, In-Hwan-
dc.contributor.authorKoh, Young-Hag-
dc.contributor.authorChoi, Won-Young-
dc.contributor.authorKim, Hyoun-Ee-
dc.date.accessioned2021-09-06T23:53:23Z-
dc.date.available2021-09-06T23:53:23Z-
dc.date.created2021-06-18-
dc.date.issued2012-
dc.identifier.issn0959-9428-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/109310-
dc.description.abstractWe herein propose a novel way of producing nanofibrous gelatin-silica hybrid scaffolds through thermally induced phase-separation (TIPS) particularly using mixtures of gelatin solution and silica sol, which can mimic the physical structure, chemical composition, and eventually functions of the native bone extracellular matrix (ECM). The gelatin solutions were homogeneously hybridized with various contents of a silica sol using simple magnetic stirring, which enabled the construction of a nanofibrous structure with a uniform distribution of the silica in the gelatin nanofibers. The nanofibrous gelatin-silica hybrid scaffolds showed much better mechanical properties and in vitro biodegradation stability and apatite-forming ability than the nanofibrous pure gelatin scaffold, which were achieved by the presence of a stiff, bioactive silica phase in the nanofibers and the interaction between the silica hydroxyls and the amino group in the gelatin polymer. In addition, the nanofibrous gelatin-silica hybrid scaffold with a silica content of 30 wt% showed reasonably high in vitro biocompatibility. These findings suggest that the highly porous, nanofibrous hybrid structure mimicking the bone ECM can provide an excellent matrix for bone tissue regeneration.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectBIOACTIVE GLASS MICROSPHERES-
dc.subjectPORE STRUCTURE-
dc.subjectBONE-
dc.subjectBIOMATERIALS-
dc.subjectSILOXANE-
dc.subjectGROWTH-
dc.titleNanofibrous gelatin-silica hybrid scaffolds mimicking the native extracellular matrix (ECM) using thermally induced phase separation-
dc.typeArticle-
dc.contributor.affiliatedAuthorKoh, Young-Hag-
dc.identifier.doi10.1039/c2jm31290e-
dc.identifier.scopusid2-s2.0-84863639128-
dc.identifier.wosid000305796300040-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS CHEMISTRY, v.22, no.28, pp.14133 - 14140-
dc.relation.isPartOfJOURNAL OF MATERIALS CHEMISTRY-
dc.citation.titleJOURNAL OF MATERIALS CHEMISTRY-
dc.citation.volume22-
dc.citation.number28-
dc.citation.startPage14133-
dc.citation.endPage14140-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusBIOACTIVE GLASS MICROSPHERES-
dc.subject.keywordPlusPORE STRUCTURE-
dc.subject.keywordPlusBONE-
dc.subject.keywordPlusBIOMATERIALS-
dc.subject.keywordPlusSILOXANE-
dc.subject.keywordPlusGROWTH-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Bioengineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Koh, Young Hag photo

Koh, Young Hag
바이오의공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE