Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Analysis of light trapping effects in Si solar cells with a textured surface by ray tracing simulation

Full metadata record
DC Field Value Language
dc.contributor.authorByun, Seok-Joo-
dc.contributor.authorByun, Seok Yong-
dc.contributor.authorLee, Jangkyo-
dc.contributor.authorKim, Jae Wan-
dc.contributor.authorLee, Taek Sung-
dc.contributor.authorCho, Kyuman-
dc.contributor.authorSheen, Dongwoo-
dc.contributor.authorTark, Sung Ju-
dc.contributor.authorKim, Donghwan-
dc.contributor.authorKim, Won Mok-
dc.date.accessioned2021-09-07T10:56:40Z-
dc.date.available2021-09-07T10:56:40Z-
dc.date.created2021-06-14-
dc.date.issued2011-07-
dc.identifier.issn1567-1739-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/112061-
dc.description.abstractThe effects of the size and density of a pyramidal texture, as formed on the surface of Si solar cells to increase the light trapping efficiency, on the optical reflectance and absorptance were examined by comparing simulation results and experimental observations. A ray tracing algorithm capable of the direct calculation of the absorbed energy in active Si was utilized for the simulation. The simulation results showed that the optical reflectance spectra, i.e., the absorptances, of the textured surface with a fixed density of pyramids were not affected by the pyramid pitch, whereas the spectra with varying density of pyramids decreased with an increase in the density of the pyramids. Observations similar to the simulation results were observed from the experimentally textured surfaces, indicating that the density of the pyramid area, i.e., the area of the flat region, is the most crucial factor affecting the optical behavior of a textured Si surface with three-dimensional pyramid patterns. (C) 2011 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectCONCENTRATOR-
dc.titleAnalysis of light trapping effects in Si solar cells with a textured surface by ray tracing simulation-
dc.typeArticle-
dc.contributor.affiliatedAuthorTark, Sung Ju-
dc.contributor.affiliatedAuthorKim, Donghwan-
dc.identifier.doi10.1016/j.cap.2011.01.048-
dc.identifier.wosid000296726300007-
dc.identifier.bibliographicCitationCURRENT APPLIED PHYSICS, v.11, no.4, pp.S23 - S25-
dc.relation.isPartOfCURRENT APPLIED PHYSICS-
dc.citation.titleCURRENT APPLIED PHYSICS-
dc.citation.volume11-
dc.citation.number4-
dc.citation.startPageS23-
dc.citation.endPageS25-
dc.type.rimsART-
dc.type.docTypeArticle; Proceedings Paper-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusCONCENTRATOR-
dc.subject.keywordAuthorRay tracing-
dc.subject.keywordAuthorSi solar cell-
dc.subject.keywordAuthorTexture-
dc.subject.keywordAuthorEtching-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher KIM, Dong hwan photo

KIM, Dong hwan
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE