Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Large-Scale Solution-Phase Growth of Cu-Doped ZnO Nanowire Networks

Full metadata record
DC Field Value Language
dc.contributor.authorXu, Chunju-
dc.contributor.authorKoo, Tae-Woong-
dc.contributor.authorKim, Byung-Sung-
dc.contributor.authorLee, Jae-Hyun-
dc.contributor.authorHwang, Sung Woo-
dc.contributor.authorWhang, Dongmok-
dc.date.accessioned2021-09-07T11:17:47Z-
dc.date.available2021-09-07T11:17:47Z-
dc.date.created2021-06-14-
dc.date.issued2011-07-
dc.identifier.issn1533-4880-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/112181-
dc.description.abstractFilm-like networks of Cu-doped (0.8-2.5 at.%) ZnO nanowires were successfully synthesized through a facile solution process at a low temperature (<100 degrees C). The pH value of solution plays a key role in controlling the density and quality of the Cu-doped ZnO nanowires and the dopant concentration of ZnO nanowires was controlled by adjusting the Cu2+/Zn2+ concentration ratio during the synthesis. The structural study showed that the as-prepared Cu-doped ZnO nanowires with a narrow diameter range of 20-30 nm were single crystal and grew along [0001] direction. Photoluminescence and electrical conductivity measurements showed that Cu doping can lead to a redshift in bandgap energy and an increase in the resistivity of ZnO. The thermal annealing of the as-grown nanowires at a low temperature (300 degrees C) decreased the defect-related emission within the visible range and increased the electrical conductivity. The high-quality ZnO nanowire network with controlled doping will enable further application to flexible and transparent electronics.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER SCIENTIFIC PUBLISHERS-
dc.subjectROOM-TEMPERATURE FERROMAGNETISM-
dc.subjectZINC-OXIDE-
dc.subjectTHIN-FILMS-
dc.subjectCONDUCTIVITY-
dc.subjectNANORODS-
dc.titleLarge-Scale Solution-Phase Growth of Cu-Doped ZnO Nanowire Networks-
dc.typeArticle-
dc.contributor.affiliatedAuthorHwang, Sung Woo-
dc.identifier.doi10.1166/jnn.2011.4414-
dc.identifier.wosid000293663200083-
dc.identifier.bibliographicCitationJOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, v.11, no.7, pp.6062 - 6066-
dc.relation.isPartOfJOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY-
dc.citation.titleJOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY-
dc.citation.volume11-
dc.citation.number7-
dc.citation.startPage6062-
dc.citation.endPage6066-
dc.type.rimsART-
dc.type.docTypeArticle; Proceedings Paper-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusROOM-TEMPERATURE FERROMAGNETISM-
dc.subject.keywordPlusZINC-OXIDE-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusCONDUCTIVITY-
dc.subject.keywordPlusNANORODS-
dc.subject.keywordAuthorCu-Doped ZnO Nanowires-
dc.subject.keywordAuthorSolution Route-
dc.subject.keywordAuthorOptical and Electrical Properties-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE