Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Development of Escherichia coli MG1655 strains to produce long chain fatty acids by engineering fatty acid synthesis (FAS) metabolism

Full metadata record
DC Field Value Language
dc.contributor.authorJeon, Eunyoung-
dc.contributor.authorLee, Sunhee-
dc.contributor.authorWon, Jong-In-
dc.contributor.authorHan, Sung Ok-
dc.contributor.authorKim, Jihyeon-
dc.contributor.authorLee, Jinwon-
dc.date.accessioned2021-09-07T11:38:46Z-
dc.date.available2021-09-07T11:38:46Z-
dc.date.created2021-06-14-
dc.date.issued2011-06-10-
dc.identifier.issn0141-0229-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/112238-
dc.description.abstractThe goal of this research was to develop recombinant Escherichia coli to improve fatty acid synthesis (FAS). Genes encoding acetyl-CoA carboxylase (accA, accB, accC), malonyl-CoA[acyl-carrier-protein] transacylase (fabD), and acyl-acyl carrier protein thioesterase (EC 3.1.2.14 gene), which are all enzymes that catalyze key steps in the synthesis of fatty acids, were cloned and over-expressed in E. coli MG1655. The acetyl-CoA carboxylase (ACC) enzyme catalyzes the addition of CO2 to acetyl-CoA to generate malonyl-CoA. The enzyme encoded by the fabD gene converts malonyl-CoA to malonyl-[acp], and the EC 3.1.2.14 gene converts fatty acyl-ACP chains to long chain fatty acids. All the genes except for the EC 3.1.2.14 gene were homologous to E. coli genes and were used to improve the enzymatic activities to over-express components of the FAS pathway through metabolic engineering. All recombinant E. coli MG1655 strains containing various gene combinations were developed using the pTrc99A expression vector. To observe changes in metabolism, the in vitro metabolites and fatty acids produced by the recombinants were analyzed. The fatty acids (C16) from recombinant strains were produced 1.23-2.41 times higher than that from the wild type. (C) 2011 Elsevier Inc. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCIENCE INC-
dc.subjectCARBOXYLASE-
dc.subjectBIOSYNTHESIS-
dc.subjectEXPRESSION-
dc.subjectPROTEINS-
dc.titleDevelopment of Escherichia coli MG1655 strains to produce long chain fatty acids by engineering fatty acid synthesis (FAS) metabolism-
dc.typeArticle-
dc.contributor.affiliatedAuthorHan, Sung Ok-
dc.identifier.doi10.1016/j.enzmictec.2011.04.001-
dc.identifier.scopusid2-s2.0-79957546202-
dc.identifier.wosid000292231500008-
dc.identifier.bibliographicCitationENZYME AND MICROBIAL TECHNOLOGY, v.49, no.1, pp.44 - 51-
dc.relation.isPartOfENZYME AND MICROBIAL TECHNOLOGY-
dc.citation.titleENZYME AND MICROBIAL TECHNOLOGY-
dc.citation.volume49-
dc.citation.number1-
dc.citation.startPage44-
dc.citation.endPage51-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.subject.keywordPlusCARBOXYLASE-
dc.subject.keywordPlusBIOSYNTHESIS-
dc.subject.keywordPlusEXPRESSION-
dc.subject.keywordPlusPROTEINS-
dc.subject.keywordAuthorE. coli MG1655-
dc.subject.keywordAuthorFatty acid biosynthesis-
dc.subject.keywordAuthorLong chain fatty acid-
dc.subject.keywordAuthorAcetyl-CoA-
dc.subject.keywordAuthorMalonyl-CoA-
dc.subject.keywordAuthorMalonyl-[acp]-
dc.subject.keywordAuthorFatty acyl-ACP chain-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biotechnology > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE