Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Selective Surface Oxidation of 590 MPa TRIP Steel and Its Effect on Hot-Dip Galvanizability

Authors
Kim, Seong-HwanIm, Jun-MoHuh, Joo-YoulLee, Suk-KyuPark, Rho-BumKim, Jong-Sang
Issue Date
4월-2011
Publisher
KOREAN INST METALS MATERIALS
Keywords
metals; annealing; oxidation; scanning electron microscopy; TRIP steel; hot-dip galvanizing
Citation
KOREAN JOURNAL OF METALS AND MATERIALS, v.49, no.4, pp.281 - 290
Indexed
SCIE
SCOPUS
KCI
Journal Title
KOREAN JOURNAL OF METALS AND MATERIALS
Volume
49
Number
4
Start Page
281
End Page
290
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/112784
DOI
10.3365/KJMM.2011.49.4.281
ISSN
1738-8228
Abstract
In order to gain better understanding of the selective surface oxidation and its influence on the galvanizability of a transformation-induced plasticity (TRIP) assisted steel containing 1.5 wt.% Si and 1.6 wt.% Mn, a model experiment has been carried out by depositing Si and Mn (each with a nominal thickness of 10 nm) in either monolayers or bilayers on a low-alloy interstitial-free (IF) steel sheet. After intercritical annealing at 800 degrees C in a N-2 ambient with a dew point of -40 degrees C, the surface scale formed on 590 MPa TRIP steel exhibited a microstructure similar to that of the scale formed on the Mn/Si bilayer-coated IF steel, consisting of Mn2SiO4 particles embedded in an amorphous SiO2 film. The present study results indicated that, during the intercritical annealing process of 590 MPa TRIP steel, surface segregation of Si occurs first to form an amorphous SiO2 film, which in turn accelerates the out-diffusion of Mn to form more stable Mn-Si oxide particles on the steel surface. During hot-dip galvanizing, particulate Fe3O4, MnO, and Si-Mn oxides were reduced more readily by Al in a Zn bath than the amorphous SiO2 film. Therefore, in order to improve the galvanizability of 590 TRIP steel, it is most desirable to minimize the surface segregation of Si during the intercritical annealing process.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Huh, Joo Youl photo

Huh, Joo Youl
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE