Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Improvement of electrical properties via glucose oxidase-immobilization by actively turning over glucose for an enzyme-based biofuel cell modified with DNA-wrapped single walled nanotubes

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Jin Young-
dc.contributor.authorShin, Hyun Yong-
dc.contributor.authorKang, Seong Woo-
dc.contributor.authorPark, Chulhwan-
dc.contributor.authorKim, Seung Wook-
dc.date.accessioned2021-09-07T16:03:41Z-
dc.date.available2021-09-07T16:03:41Z-
dc.date.created2021-06-14-
dc.date.issued2011-01-15-
dc.identifier.issn0956-5663-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/113271-
dc.description.abstractOne of the major areas of study associated with enzyme fuel cells (EFCs) has been identification of redox enzymes with high electron transfer rates that lead to a high power output. The effects of a method of enzyme immobilization by actively turning over glucose on the electrical properties of a fuel cell were evaluated under ambient conditions in attempt to increase the power of an EFC modified with DNA-wrapped single walled carbon nanotubes (SWNTs). The anode cyclic voltammetry (CV cycle) electrical properties increased as a result of glucose oxidase (GOD) immobilization by actively turning over glucose. Furthermore, an EFC that employed DNA-wrapped SWNTs and GOD immobilization in conjunction with protection of the active site increased the stability of the cell, which enabled maintenance of a high level of power production (ca. 730-760 mu W cm(-2)) for 1 week. (C) 2010 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER ADVANCED TECHNOLOGY-
dc.subjectFUEL-CELL-
dc.subjectELECTRODES-
dc.subjectBIOSENSORS-
dc.titleImprovement of electrical properties via glucose oxidase-immobilization by actively turning over glucose for an enzyme-based biofuel cell modified with DNA-wrapped single walled nanotubes-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Seung Wook-
dc.identifier.doi10.1016/j.bios.2010.07.020-
dc.identifier.scopusid2-s2.0-78650604126-
dc.identifier.wosid000286904400146-
dc.identifier.bibliographicCitationBIOSENSORS & BIOELECTRONICS, v.26, no.5, pp.2685 - 2688-
dc.relation.isPartOfBIOSENSORS & BIOELECTRONICS-
dc.citation.titleBIOSENSORS & BIOELECTRONICS-
dc.citation.volume26-
dc.citation.number5-
dc.citation.startPage2685-
dc.citation.endPage2688-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaBiophysics-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryBiophysics-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.relation.journalWebOfScienceCategoryChemistry, Analytical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.subject.keywordPlusFUEL-CELL-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusBIOSENSORS-
dc.subject.keywordAuthorEnzyme-based biofuel cell-
dc.subject.keywordAuthorGlucose oxidase-
dc.subject.keywordAuthorCarbon nanotubes-
dc.subject.keywordAuthorEnzyme immobilization-
dc.subject.keywordAuthorEnzyme activity-
dc.subject.keywordAuthorEnzyme stability-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE