Phase evolution of perovskite LaNiO3 nanofibers for supercapacitor application and p-type gas sensing properties of LaOCl-NiO composite nanofibers
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hwang, Do Kyung | - |
dc.contributor.author | Kim, Soohyun | - |
dc.contributor.author | Lee, Jong-Heun | - |
dc.contributor.author | Hwang, In-Sung | - |
dc.contributor.author | Kim, Il-Doo | - |
dc.date.accessioned | 2021-09-07T21:30:38Z | - |
dc.date.available | 2021-09-07T21:30:38Z | - |
dc.date.issued | 2011 | - |
dc.identifier.issn | 0959-9428 | - |
dc.identifier.issn | 1364-5501 | - |
dc.identifier.uri | https://scholar.korea.ac.kr/handle/2021.sw.korea/114949 | - |
dc.description.abstract | This study reports the fabrication and characterization of LaOCl-NiO composite and LaNiO3 nanofiber mats and their potential applications for p-type gas sensors and electrochemical capacitors. One-dimensional LaOCl-NiO composite and LaNiO3 fibers were prepared via the electrospinning of LaNiO3 precursor/poly(vinyl acetate) composite fibers followed by subsequent thermal annealing. The size and distribution of the primary particles within the LaOCl-NiO composite and LaNiO3 fibers were largely governed by the calcination conditions (from 450 to 950 degrees C). The perovskite LaNiO3 phase started to form at calcination temperatures that exceeded 750 degrees C. Upon the formation of the perovskite LaNiO3 phase, the electrical resistivity decreased remarkably from 1.1 x 10(6) to 0.692 Omega cm. LaOCl-NiO composite fiber mats calcined at 550 degrees C and 650 degrees C showed p-type semiconducting gas sensing properties and exhibited significantly enhanced C2H5OH sensitivity against CO, H-2, NH3 and NO2 gases. The conducting LaNiO3 fiber mats calcined at 750 degrees C were used as the basis of a hybrid electrochemical capacitor in which the fiber mats served as the conducting core for electrostatic spray-deposited manganese oxide overlayers. The manganese oxide/LaNiO3 stacked electrodes exhibited a high specific capacitance of similar to 160 F g(-1) at 10 mV s(-1). | - |
dc.format.extent | 7 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | ROYAL SOC CHEMISTRY | - |
dc.title | Phase evolution of perovskite LaNiO3 nanofibers for supercapacitor application and p-type gas sensing properties of LaOCl-NiO composite nanofibers | - |
dc.type | Article | - |
dc.publisher.location | 영국 | - |
dc.identifier.doi | 10.1039/c0jm02256j | - |
dc.identifier.scopusid | 2-s2.0-79251527856 | - |
dc.identifier.wosid | 000286614100045 | - |
dc.identifier.bibliographicCitation | JOURNAL OF MATERIALS CHEMISTRY, v.21, no.6, pp 1959 - 1965 | - |
dc.citation.title | JOURNAL OF MATERIALS CHEMISTRY | - |
dc.citation.volume | 21 | - |
dc.citation.number | 6 | - |
dc.citation.startPage | 1959 | - |
dc.citation.endPage | 1965 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | sci | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.subject.keywordPlus | ELECTROCHEMICAL PROPERTIES | - |
dc.subject.keywordPlus | ANODE MATERIAL | - |
dc.subject.keywordPlus | OXIDE | - |
dc.subject.keywordPlus | ELECTRODE | - |
dc.subject.keywordPlus | DEPOSITION | - |
dc.subject.keywordPlus | NANOWIRES | - |
dc.subject.keywordPlus | IMPROVEMENT | - |
dc.subject.keywordPlus | SENSITIVITY | - |
dc.subject.keywordPlus | DEVICES | - |
dc.subject.keywordPlus | SURFACE | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea+82-2-3290-2963
COPYRIGHT © 2021 Korea University. All Rights Reserved.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.