Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

The design of a body RF coil for low-field open MRI using pseudo electric dipole radiation and simulated annealing

Full metadata record
DC Field Value Language
dc.contributor.authorKhym, Gyong-Luck-
dc.contributor.authorYang, Hyung-Jin-
dc.contributor.authorOh, Chang-Hyun-
dc.date.accessioned2021-09-07T23:22:10Z-
dc.date.available2021-09-07T23:22:10Z-
dc.date.issued2010-11-
dc.identifier.issn1567-1739-
dc.identifier.issn1878-1675-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/115466-
dc.description.abstractThe paper presents a new body RF coil design scheme for a low-field open MRI system. The RF coil is composed of four rectangular loops which are made of wide copper strips located near the surfaces of the bottom and top pole faces of the permanent magnet. The body RF coil has been designed by using the pseudo electric dipole radiation (PEDPR) method with the Metropolis algorithm. In the calculation of the RF fields via the finite difference time domain (FDTD) method, the computational time increases as the RF frequency becomes lower. Moreover, the computational process using the FDTD method takes a very long time when the RF coil is optimized. The optimization requires varying the configuration of the RF coil system and performing successive calculations of field strength and field homogeneity. When we perform these successive calculations, the computational time can be reduced by using the PEDPR method, where the segmented current elements of the RF coil are treated as pseudo electric dipole radiation sources. Because the RF coil is made of wide strips, the variation of the current density on the strip has been considered in the B(1)-field calculation. Foreach configuration of the RF coil system, the current distribution is calculated via circuit analysis, where each copper strip is considered as a parallel combination of current element lines. The preliminary field calculation study by the FDTD method verifies both the circuit analysis method for the current distribution and the PEDPR method for the radiation field strength. The optimization of the RF coil configuration is performed by the Simulated Annealing (SA) process using the Metropolis algorithm. Simulations have been performed for a 10 MHz RF frequency. The optimized RF coil has four rectangular loops of 37 cm x 100 cm with 6.5 cm wide strips which are separated vertically 49 cm and horizontally center-to-center 63 cm. In the 25 cm diameter of spherical volume (DSV), the design results show a good field inhomogeneity of the B1-field below 0.49 dB (5.8%). (C) 2010 Elsevier B.V. All rights reserved.-
dc.format.extent9-
dc.language영어-
dc.language.isoENG-
dc.publisherELSEVIER SCIENCE BV-
dc.titleThe design of a body RF coil for low-field open MRI using pseudo electric dipole radiation and simulated annealing-
dc.typeArticle-
dc.publisher.location네덜란드-
dc.identifier.doi10.1016/j.cap.2010.05.008-
dc.identifier.scopusid2-s2.0-77955551845-
dc.identifier.wosid000280865900012-
dc.identifier.bibliographicCitationCURRENT APPLIED PHYSICS, v.10, no.6, pp 1427 - 1435-
dc.citation.titleCURRENT APPLIED PHYSICS-
dc.citation.volume10-
dc.citation.number6-
dc.citation.startPage1427-
dc.citation.endPage1435-
dc.type.docTypeArticle-
dc.identifier.kciidART001496140-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasssci-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusPULSES-
dc.subject.keywordAuthorOpen MRI system-
dc.subject.keywordAuthorLow-field body RF coil-
dc.subject.keywordAuthorSimulated annealing-
dc.subject.keywordAuthorPseudo electric dipole radiation-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science and Technology > ETC > 1. Journal Articles
College of Science and Technology > Semiconductor Physics in Division of Display and Semiconductor Physics > 1. Journal Articles
College of Science and Technology > Department of Electronics and Information Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE