Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Strain Development and Medium Optimization for Fumaric Acid Production

Full metadata record
DC Field Value Language
dc.contributor.authorKang, Seong Woo-
dc.contributor.authorLee, Hawon-
dc.contributor.authorKim, Daeheum-
dc.contributor.authorLee, Dohoon-
dc.contributor.authorKim, Sangyong-
dc.contributor.authorChun, Gie-Taek-
dc.contributor.authorLee, Jinwon-
dc.contributor.authorKim, Seung Wook-
dc.contributor.authorPark, Chulhwan-
dc.date.accessioned2021-09-08T00:34:46Z-
dc.date.available2021-09-08T00:34:46Z-
dc.date.created2021-06-14-
dc.date.issued2010-09-
dc.identifier.issn1226-8372-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/115789-
dc.description.abstractRhizopus gate RUR709 mutant was isolated based on halo size from selection medium via mutagenesis with UV and gamma-rays, and the production of fumaric acid in the submerged fermentation was assessed. The maximum concentration of fumaric acid was obtained using 0.5% corn steep liquor (CSL) as the nitrogen source. Organic nitrogen sources were shown to be more effective in fumaric acid production than inorganic nitrogen sources. Using optimum medium obtained by response surface methodology (RSM), the maximum concentration of fumaric acid achieved in flask culture was 26.2 g/L, which is fairly close to the 27.4 g/L predicted by the model. The highest concentration of fumaric acid in the stirred-tank reactor generated by the R. oryzae RUR709 mutant was 32.1 g/L and yield (0.45 g/g) and productivity (0.32 g/L/h) were highest at 4 days.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherKOREAN SOC BIOTECHNOLOGY & BIOENGINEERING-
dc.subjectROTARY BIOFILM CONTACTOR-
dc.subjectRHIZOPUS-ARRHIZUS-
dc.subjectFERMENTATION-
dc.subjectMETHODOLOGY-
dc.subjectORYZAE-
dc.titleStrain Development and Medium Optimization for Fumaric Acid Production-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Seung Wook-
dc.identifier.doi10.1007/s12257-010-0081-4-
dc.identifier.scopusid2-s2.0-78649710780-
dc.identifier.wosid000283819900008-
dc.identifier.bibliographicCitationBIOTECHNOLOGY AND BIOPROCESS ENGINEERING, v.15, no.5, pp.761 - 769-
dc.relation.isPartOfBIOTECHNOLOGY AND BIOPROCESS ENGINEERING-
dc.citation.titleBIOTECHNOLOGY AND BIOPROCESS ENGINEERING-
dc.citation.volume15-
dc.citation.number5-
dc.citation.startPage761-
dc.citation.endPage769-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.identifier.kciidART001490552-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.subject.keywordPlusROTARY BIOFILM CONTACTOR-
dc.subject.keywordPlusRHIZOPUS-ARRHIZUS-
dc.subject.keywordPlusFERMENTATION-
dc.subject.keywordPlusMETHODOLOGY-
dc.subject.keywordPlusORYZAE-
dc.subject.keywordAuthorRhizopus oryzae-
dc.subject.keywordAuthorfumaric acid-
dc.subject.keywordAuthorresponse surface methodology (RSM)-
dc.subject.keywordAuthormutagenesis-
dc.subject.keywordAuthoroptimization-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE