Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Hand gesture recognition based on dynamic Bayesian network framework

Full metadata record
DC Field Value Language
dc.contributor.authorSuk, Heung-Il-
dc.contributor.authorSin, Bong-Kee-
dc.contributor.authorLee, Seong-Whan-
dc.date.accessioned2021-09-08T00:36:35Z-
dc.date.available2021-09-08T00:36:35Z-
dc.date.created2021-06-14-
dc.date.issued2010-09-
dc.identifier.issn0031-3203-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/115799-
dc.description.abstractIn this paper, we propose a new method for recognizing hand gestures in a continuous video stream using a dynamic Bayesian network or DBN model. The proposed method of DBN-based inference is preceded by steps of skin extraction and modelling, and motion tracking. Then we develop a gesture model for one- or two-hand gestures. They are used to define a cyclic gesture network for modeling continuous gesture stream. We have also developed a DP-based real-time decoding algorithm for continuous gesture recognition. In our experiments with 10 isolated gestures, we obtained a recognition rate upwards of 99.59% with cross validation. In the case of recognizing continuous stream of gestures, it recorded 84% with the precision of 80.77% for the spotted gestures. The proposed DBN-based hand gesture model and the design of a gesture network model are believed to have a strong potential for successful applications to other related problems such as sign language recognition although it is a bit more complicated requiring analysis of hand shapes. (C) 2010 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherELSEVIER SCI LTD-
dc.subjectHIDDEN MARKOV-MODELS-
dc.subjectSEARCH-
dc.subjectMOTION-
dc.titleHand gesture recognition based on dynamic Bayesian network framework-
dc.typeArticle-
dc.contributor.affiliatedAuthorSuk, Heung-Il-
dc.contributor.affiliatedAuthorLee, Seong-Whan-
dc.identifier.doi10.1016/j.patcog.2010.03.016-
dc.identifier.scopusid2-s2.0-78049504839-
dc.identifier.wosid000279271800006-
dc.identifier.bibliographicCitationPATTERN RECOGNITION, v.43, no.9, pp.3059 - 3072-
dc.relation.isPartOfPATTERN RECOGNITION-
dc.citation.titlePATTERN RECOGNITION-
dc.citation.volume43-
dc.citation.number9-
dc.citation.startPage3059-
dc.citation.endPage3072-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordPlusHIDDEN MARKOV-MODELS-
dc.subject.keywordPlusSEARCH-
dc.subject.keywordPlusMOTION-
dc.subject.keywordAuthorHand gestures recognition-
dc.subject.keywordAuthorDynamic Bayesian network-
dc.subject.keywordAuthorCoupled hidden Markov model-
dc.subject.keywordAuthorContinuous gesture spotting-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Seong Whan photo

Lee, Seong Whan
인공지능학과
Read more

Altmetrics

Total Views & Downloads

BROWSE