Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Iron Homeostasis Affects Antibiotic-mediated Cell Death in Pseudomonas Species

Full metadata record
DC Field Value Language
dc.contributor.authorYeom, Jinki-
dc.contributor.authorImlay, James A.-
dc.contributor.authorPark, Woojun-
dc.date.accessioned2021-09-08T01:30:08Z-
dc.date.available2021-09-08T01:30:08Z-
dc.date.created2021-06-11-
dc.date.issued2010-07-16-
dc.identifier.issn0021-9258-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/116050-
dc.description.abstractAntibiotics can induce cell death via a variety of action modes, including the inhibition of transcription, ribosomal function, and cell wall biosynthesis. In this study, we demonstrated directly that iron availability is important to the action of antibiotics, and the ferric reductases of Pseudomonas putida and Pseudomonas aeruginosa could accelerate antibiotic-mediated cell death by promoting the Fenton reaction. The modulation of reduced nicotinamide-adenine dinucleotide (NADH) levels and iron chelation affected the actions of antibiotics. Interestingly, the deletion of the ferric reductase gene confers more antibiotic resistance upon cells, and its overexpression accelerates antibiotic-mediated cell death. The results of transcriptome analysis showed that both Pseudomonas species induce many oxidative stress genes under antibiotic conditions, which could not be observed in ferric reductase mutants. Our results indicate that iron homeostasis is crucial for bacterial cell survival under antibiotics and should constitute a significant target for boosting the action of antibiotics.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC-
dc.subjectMETALLO-BETA-LACTAMASE-
dc.subjectOXIDATIVE STRESS-
dc.subjectDNA-DAMAGE-
dc.subjectRESISTANCE-
dc.subjectAERUGINOSA-
dc.subjectMEMBRANE-
dc.subjectVIRULENCE-
dc.titleIron Homeostasis Affects Antibiotic-mediated Cell Death in Pseudomonas Species-
dc.typeArticle-
dc.contributor.affiliatedAuthorPark, Woojun-
dc.identifier.doi10.1074/jbc.M110.127456-
dc.identifier.scopusid2-s2.0-77954609311-
dc.identifier.wosid000279702200079-
dc.identifier.bibliographicCitationJOURNAL OF BIOLOGICAL CHEMISTRY, v.285, no.29, pp.22689 - 22695-
dc.relation.isPartOfJOURNAL OF BIOLOGICAL CHEMISTRY-
dc.citation.titleJOURNAL OF BIOLOGICAL CHEMISTRY-
dc.citation.volume285-
dc.citation.number29-
dc.citation.startPage22689-
dc.citation.endPage22695-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaBiochemistry & Molecular Biology-
dc.relation.journalWebOfScienceCategoryBiochemistry & Molecular Biology-
dc.subject.keywordPlusMETALLO-BETA-LACTAMASE-
dc.subject.keywordPlusOXIDATIVE STRESS-
dc.subject.keywordPlusDNA-DAMAGE-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordPlusAERUGINOSA-
dc.subject.keywordPlusMEMBRANE-
dc.subject.keywordPlusVIRULENCE-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Environmental Science and Ecological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Woo jun photo

Park, Woo jun
생명과학대학 (환경생태공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE