Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Electrochemically Active Dendrimers for the Manufacture of Multilayer Films: Electrochemical Deposition or Polymerization Process by End-Capped Triarylamine or Carbazole Dendrimer

Authors
Son, Ho-JinHan, Won-SikHan, Su JungLee, ChongmokKang, Sang Ook
Issue Date
21-1월-2010
Publisher
AMER CHEMICAL SOC
Citation
JOURNAL OF PHYSICAL CHEMISTRY C, v.114, no.2, pp.1064 - 1072
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF PHYSICAL CHEMISTRY C
Volume
114
Number
2
Start Page
1064
End Page
1072
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/117145
DOI
10.1021/jp9083184
ISSN
1932-7447
Abstract
Two different end-capped triarylamine and carbazole dendrimers of the types Gn-2(n+1)NPB and Gn-2(n+1)CBP (n = 1, 2, 3, 4) were prepared by divergent synthesis by reacting diethenyl propagating carbosilane dendrimers with Suitable functional groups, Such as naphthylphenylaminophenyl (NPB) and carbazolylphenyl (CBP) units. The electrochemical Studies of these two series showed that the electrochemical properties of each dendrimer in both solution and on the immobilized electrode were dependent on the generation of dendrites and type of periphery group. Gn-2(n+1)NPB dendrimers (n = 3, 4) underwent oxidative precipitation on the electrode surface without a proceeding electrochemical reaction only to form highly charged ammonium cations, whereas the Gn-2(n+1)CBP dendrimers produced cross-linked polymers via ail oxidative polymerization process. The ammonium cationic species of the G3-16NPB dendron was confirmed on the basis of the characteristic 1s peak of the F atom in X-ray photoelectron spectroscopy (XPS). Overall, the electrochemically activated G3-16NPB dendron transforms to a highly charged species with peripheral NR3+BF4- units to undergo an electrodeposition (ED) process. As a result, the NPB and CBP dendrimers produce dissimilar deposited films, exhibiting different surface morphology and hydrophilicity based on atomic force microscope and contact angle measurements. Using these two dissimilar electrochemical deposition processes, a new method for fabricating multilayer thin films on a conducting substrate was demonstrated successfully.
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Advanced Materials Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE