Evolutionary design of Sugeno-type fuzzy systems for modelling humanoid robots
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Dong W. | - |
dc.contributor.author | de Silva, Clarence W. | - |
dc.contributor.author | Park, Gwi-Tae | - |
dc.date.accessioned | 2021-09-08T09:56:03Z | - |
dc.date.available | 2021-09-08T09:56:03Z | - |
dc.date.issued | 2010 | - |
dc.identifier.issn | 0020-7721 | - |
dc.identifier.issn | 1464-5319 | - |
dc.identifier.uri | https://scholar.korea.ac.kr/handle/2021.sw.korea/118530 | - |
dc.description.abstract | An evolutionary design of Sugeno-type fuzzy systems for modelling humanoid robots is presented in this article, and issues related to the determination of the antecedent and consequent structures of the fuzzy model are addressed. In the design of the fuzzy model, determination of the type, the number of membership functions assigned to the input variables, the types of consequent equations for the fuzzy rules, the optimal number of input variables, and the dominant input variables among the input candidates are carried out using evolutionary algorithms. Using these algorithms, proper structures are evolved for the antecedent and the consequent of the Sugeno-type fuzzy model. Simulations are performed to show the effectiveness of the developed method when applied to a humanoid robot system with strong nonlinearities that have 10 input candidates. | - |
dc.format.extent | 14 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | TAYLOR & FRANCIS LTD | - |
dc.title | Evolutionary design of Sugeno-type fuzzy systems for modelling humanoid robots | - |
dc.type | Article | - |
dc.publisher.location | 영국 | - |
dc.identifier.doi | 10.1080/00207720903474314 | - |
dc.identifier.scopusid | 2-s2.0-77953486940 | - |
dc.identifier.wosid | 000278648300011 | - |
dc.identifier.bibliographicCitation | INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, v.41, no.7, pp 875 - 888 | - |
dc.citation.title | INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE | - |
dc.citation.volume | 41 | - |
dc.citation.number | 7 | - |
dc.citation.startPage | 875 | - |
dc.citation.endPage | 888 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Automation & Control Systems | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Operations Research & Management Science | - |
dc.relation.journalWebOfScienceCategory | Automation & Control Systems | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Theory & Methods | - |
dc.relation.journalWebOfScienceCategory | Operations Research & Management Science | - |
dc.subject.keywordPlus | IDENTIFICATION | - |
dc.subject.keywordAuthor | evolutionary design | - |
dc.subject.keywordAuthor | Sugeno-type fuzzy system | - |
dc.subject.keywordAuthor | humanoid robots | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea+82-2-3290-2963
COPYRIGHT © 2021 Korea University. All Rights Reserved.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.