Organic donor-sigma-acceptor molecules based on 1,2,4,5-tetrakis((E)-2-(5 '-hexyl-2,2 '-bithiophen-5-yl)vinyl)benzene and perylene diimide derivative and their application to photovoltaic devices
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Myung Hee | - |
dc.contributor.author | Cho, Min Ju | - |
dc.contributor.author | Kim, Kyung Hwan | - |
dc.contributor.author | Hoang, Mai Ha | - |
dc.contributor.author | Lee, Tae Wan | - |
dc.contributor.author | Jin, Jung-Il | - |
dc.contributor.author | Kang, Nam Su | - |
dc.contributor.author | Yu, Jae-Woong | - |
dc.contributor.author | Choi, Dong Hoon | - |
dc.date.accessioned | 2021-09-08T10:58:19Z | - |
dc.date.available | 2021-09-08T10:58:19Z | - |
dc.date.issued | 2009-12 | - |
dc.identifier.issn | 1566-1199 | - |
dc.identifier.issn | 1878-5530 | - |
dc.identifier.uri | https://scholar.korea.ac.kr/handle/2021.sw.korea/118796 | - |
dc.description.abstract | Donor-sigma-acceptor molecules of HPBT-n(PDI) (n = 1, 2, and 4) containing perylene diimide (PDI) and pi-extended 1,2,4,5-tetrakis((E)-2-(5'-hexyl-2,2'-bithiophen-5-yl)vinyl)benzene (HPBT) have been successfully synthesized for studying the self-organization of each moiety and their applications in photovoltaic devices. Interesting features were found in these molecules: the aggregation-induced crystallization in the HPBT moieties enhanced the power conversion efficiency (PCE) in the photovoltaic cell. By incorporating HPBT as the donor and PDI as the acceptor moiety, we anticipated that their high degree of independent aggregation-induced crystallization would yield electron/hole transport channels and high mobility in the desired direction of charge transport. In a photovoltaic device, HPBT-1(PDI) gave a PCE of 0.22% with an open circuit voltage ranging from 0.62 to 0.63 V. When the HPBT moiety was more hindered by the PDI moiety, less PCE was observed in HPBT-2(PDI). Addition of methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) resulted in enhancement of the PCE due to enhanced visible absorption. The device bearing HPBT-1(PDI) and PCBM (1:4 mol ratio) demonstrate much higher PCE to be around 1.60%. (C) 2009 Elsevier B.V. All rights reserved. | - |
dc.format.extent | 13 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | ELSEVIER SCIENCE BV | - |
dc.title | Organic donor-sigma-acceptor molecules based on 1,2,4,5-tetrakis((E)-2-(5 '-hexyl-2,2 '-bithiophen-5-yl)vinyl)benzene and perylene diimide derivative and their application to photovoltaic devices | - |
dc.type | Article | - |
dc.publisher.location | 네덜란드 | - |
dc.identifier.doi | 10.1016/j.orgel.2009.08.004 | - |
dc.identifier.scopusid | 2-s2.0-71849100817 | - |
dc.identifier.wosid | 000272605200003 | - |
dc.identifier.bibliographicCitation | ORGANIC ELECTRONICS, v.10, no.8, pp 1429 - 1441 | - |
dc.citation.title | ORGANIC ELECTRONICS | - |
dc.citation.volume | 10 | - |
dc.citation.number | 8 | - |
dc.citation.startPage | 1429 | - |
dc.citation.endPage | 1441 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.subject.keywordPlus | PHOTOINDUCED ELECTRON-TRANSFER | - |
dc.subject.keywordPlus | POLYMER SOLAR-CELLS | - |
dc.subject.keywordPlus | CONJUGATED POLYMER | - |
dc.subject.keywordPlus | ENERGY-TRANSFER | - |
dc.subject.keywordPlus | MAGNESIUM-ION | - |
dc.subject.keywordPlus | DYAD | - |
dc.subject.keywordPlus | BISIMIDE | - |
dc.subject.keywordPlus | COPOLYMERS | - |
dc.subject.keywordPlus | SYSTEM | - |
dc.subject.keywordPlus | TETRATHIAFULVALENE | - |
dc.subject.keywordAuthor | Donor | - |
dc.subject.keywordAuthor | Acceptor | - |
dc.subject.keywordAuthor | Crystallization | - |
dc.subject.keywordAuthor | Semiconductor | - |
dc.subject.keywordAuthor | Photovoltaic cell | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea+82-2-3290-2963
COPYRIGHT © 2021 Korea University. All Rights Reserved.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.