Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Differentiation of Neural Progenitor Cells in a Microfluidic Chip-Generated Cytokine Gradient

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Joong Yull-
dc.contributor.authorKim, Suel-Kee-
dc.contributor.authorWoo, Dong-Hun-
dc.contributor.authorLee, Eun-Joong-
dc.contributor.authorKim, Jong-Hoon-
dc.contributor.authorLee, Sang-Hoon-
dc.date.accessioned2021-09-08T12:05:28Z-
dc.date.available2021-09-08T12:05:28Z-
dc.date.created2021-06-11-
dc.date.issued2009-11-
dc.identifier.issn1066-5099-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/119034-
dc.description.abstractIn early embryonic development, spatial gradients of diffusible signaling molecules play important roles in controlling differentiation of cell types or arrays in diverse tissues. Thus, the concentration of exogenous cytokines or growth factors at any given time is crucial to the formation of an enriched population of a desired cell type from primitive stem cells in vitro. Microfluidic technology has proven very useful in the creation of cell-friendly micro-environments. Such techniques are, however, currently limited to a few cell types. Improved versatility is required if these systems are to become practically applicable to stem cells showing various plasticity ranges. Here, we built a microfluidic platform in which cells can be exposed to stable concentration gradients of various signaling molecules for more than a week with only minimal handling and no external power source. To maintain stability of the gradient concentration, the osmotic pumping performance was optimized by balancing the capillary action and hydraulic pressure in the inlet reagent reservoirs. We cultured an enriched population of neural progenitors derived from human embryonic stem cells in our microfluidic chamber for 8 days under continuous cytokine gradients (sonic hedgehog, fibroblast growth factor 8, and bone morphogenetic protein 4). Neural progenitors successfully differentiated into neurons, generating a complex neural network. The average numbers of both neuronal cell body clusters and neurite bundles were directly proportional to sonic hedgehog concentrations in the gradient chip. The system was shown to be useful for both basic and translational research, with straightforward mechanisms and operational schemes. STEM CELLS 2009; 27: 2646-2654-
dc.languageEnglish-
dc.language.isoen-
dc.publisherWILEY-
dc.subjectBONE MORPHOGENETIC PROTEINS-
dc.subjectSTEM-CELLS-
dc.subjectSOFT LITHOGRAPHY-
dc.subjectMAMMALIAN-CELLS-
dc.subjectSONIC HEDGEHOG-
dc.subjectNEURONS-
dc.subjectPROLIFERATION-
dc.subjectNEUROGENESIS-
dc.subjectBIOLOGY-
dc.subjectDEVICE-
dc.titleDifferentiation of Neural Progenitor Cells in a Microfluidic Chip-Generated Cytokine Gradient-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Jong-Hoon-
dc.contributor.affiliatedAuthorLee, Sang-Hoon-
dc.identifier.doi10.1002/stem.202-
dc.identifier.scopusid2-s2.0-72849143548-
dc.identifier.wosid000271830700002-
dc.identifier.bibliographicCitationSTEM CELLS, v.27, no.11, pp.2646 - 2654-
dc.relation.isPartOfSTEM CELLS-
dc.citation.titleSTEM CELLS-
dc.citation.volume27-
dc.citation.number11-
dc.citation.startPage2646-
dc.citation.endPage2654-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaCell Biology-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.relation.journalResearchAreaOncology-
dc.relation.journalResearchAreaHematology-
dc.relation.journalWebOfScienceCategoryCell & Tissue Engineering-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.relation.journalWebOfScienceCategoryOncology-
dc.relation.journalWebOfScienceCategoryCell Biology-
dc.relation.journalWebOfScienceCategoryHematology-
dc.subject.keywordPlusBONE MORPHOGENETIC PROTEINS-
dc.subject.keywordPlusSTEM-CELLS-
dc.subject.keywordPlusSOFT LITHOGRAPHY-
dc.subject.keywordPlusMAMMALIAN-CELLS-
dc.subject.keywordPlusSONIC HEDGEHOG-
dc.subject.keywordPlusNEURONS-
dc.subject.keywordPlusPROLIFERATION-
dc.subject.keywordPlusNEUROGENESIS-
dc.subject.keywordPlusBIOLOGY-
dc.subject.keywordPlusDEVICE-
dc.subject.keywordAuthorTechnology-
dc.subject.keywordAuthorNeural differentiation-
dc.subject.keywordAuthorProgenitor cells-
dc.subject.keywordAuthorEmbryonic stem cells-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Biotechnology > 1. Journal Articles
College of Health Sciences > School of Biomedical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE