Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Hydrophilic Dots on Hydrophobic Nanopatterned Surfaces as a Flexible Gas Barrier

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, Jin Hwan-
dc.contributor.authorKim, Young Min-
dc.contributor.authorPark, Young Wook-
dc.contributor.authorPark, Tae Hyun-
dc.contributor.authorDong, Ki Young-
dc.contributor.authorJu, Byeong Kwon-
dc.date.accessioned2021-09-08T16:10:35Z-
dc.date.available2021-09-08T16:10:35Z-
dc.date.created2021-06-10-
dc.date.issued2009-06-16-
dc.identifier.issn0743-7463-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/119821-
dc.description.abstractThe present study demonstrates a transparent polymeric gas barrier film mimicking the Namib Desert beetle's back. SiO2 hydrophilic dots have been deposited on a nanopatterned hydrophobic surface. A nanopatterned surface was fabricated by UV-curable nanoimprinting techniques. The surface energies of the hydrophobic and hydrophilic domains were 7.29 and > 73.12 mN/m, respectively. The characteristics of water vapor transfer from hydrophobic to hydrophilic regions due to difference of the attractive force at interfaces are shown to yield the enhanced barrier performance according to the Ca degradation measurements. This strategy is suitable for organic electronics, solar cells, and plastic optics applications requiring moisture-free properties with high transmission.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.subjectSUPERHYDROPHOBIC SURFACES-
dc.subjectDESERT BEETLE-
dc.subjectFABRICATION-
dc.subjectWETTABILITY-
dc.subjectTRANSITION-
dc.subjectROUTE-
dc.subjectFILMS-
dc.titleHydrophilic Dots on Hydrophobic Nanopatterned Surfaces as a Flexible Gas Barrier-
dc.typeArticle-
dc.contributor.affiliatedAuthorJu, Byeong Kwon-
dc.identifier.doi10.1021/la804325x-
dc.identifier.scopusid2-s2.0-66749177804-
dc.identifier.wosid000266929900082-
dc.identifier.bibliographicCitationLANGMUIR, v.25, no.12, pp.7156 - 7160-
dc.relation.isPartOfLANGMUIR-
dc.citation.titleLANGMUIR-
dc.citation.volume25-
dc.citation.number12-
dc.citation.startPage7156-
dc.citation.endPage7160-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusSUPERHYDROPHOBIC SURFACES-
dc.subject.keywordPlusDESERT BEETLE-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusWETTABILITY-
dc.subject.keywordPlusTRANSITION-
dc.subject.keywordPlusROUTE-
dc.subject.keywordPlusFILMS-
dc.subject.keywordAuthorOrganic electronics-
dc.subject.keywordAuthorOLED Gas barrier-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ju, Byeong kwon photo

Ju, Byeong kwon
College of Engineering (School of Electrical Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE