Zero-valent iron pretreatment for detoxifying iodine in liquid crystal display (LCD) manufacturing wastewater
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, J. W. | - |
dc.contributor.author | Cha, D. K. | - |
dc.contributor.author | Oh, Y. K. | - |
dc.contributor.author | Ko, K. B. | - |
dc.contributor.author | Song, J. S. | - |
dc.date.accessioned | 2021-09-08T17:05:17Z | - |
dc.date.available | 2021-09-08T17:05:17Z | - |
dc.date.issued | 2009-05-15 | - |
dc.identifier.issn | 0304-3894 | - |
dc.identifier.issn | 1873-3336 | - |
dc.identifier.uri | https://scholar.korea.ac.kr/handle/2021.sw.korea/120046 | - |
dc.description.abstract | This study investigated reductive transformation of iodine by zero-valent iron (ZVI), and the subsequent detoxification of iodine-laden wastewater. ZVI completely reduced aqueous iodine to non-toxic iodide. Respirometric bioassay illustrated that the presence of iodine increase the lag phase before the onset of oxygen consumption. The length of lag phase was proportional to increasing iodine dosage. The reduction products of iodine by ZVI did not exhibit any inhibitory effect on the biodegradation. The cumulative biological oxidation associated with iodine toxicity was closely fitted to Gompertz model. When iodine-laden wastewater was continuously fed to a bench-scale activated sludge unit, chemical oxygen demand (COD) removal efficiencies decreased from above 90% to below 80% along with a marked decrease in biomass concentration. On the other hand, the COD removal efficiency and biomass concentration remained constant in the integrated ZVI-activated sludge system. Respirometric bioassay with real iodine-laden LCD manufacturing wastewater demonstrated that ZVI was effective for detoxifying iodine and consequently enhancing biodegradability of wastewater. This result suggested that ZVI pretreatment may be a feasible option for the removal of iodine in LCD processing wastewater, instead of more costly processes such as adsorption and chemical oxidation, which are commonly in the iodine-laden LCD wastewater treatment facility. (C) 2008 Elsevier B.V. All rights reserved. | - |
dc.format.extent | 6 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | ELSEVIER SCIENCE BV | - |
dc.title | Zero-valent iron pretreatment for detoxifying iodine in liquid crystal display (LCD) manufacturing wastewater | - |
dc.type | Article | - |
dc.publisher.location | 네덜란드 | - |
dc.identifier.doi | 10.1016/j.jhazmat.2008.07.147 | - |
dc.identifier.scopusid | 2-s2.0-61549088182 | - |
dc.identifier.wosid | 000264667200010 | - |
dc.identifier.bibliographicCitation | JOURNAL OF HAZARDOUS MATERIALS, v.164, no.1, pp 67 - 72 | - |
dc.citation.title | JOURNAL OF HAZARDOUS MATERIALS | - |
dc.citation.volume | 164 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 67 | - |
dc.citation.endPage | 72 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Environmental Sciences & Ecology | - |
dc.relation.journalWebOfScienceCategory | Engineering, Environmental | - |
dc.relation.journalWebOfScienceCategory | Environmental Sciences | - |
dc.subject.keywordPlus | ACTIVATED CARBON | - |
dc.subject.keywordPlus | ELEMENTAL IRON | - |
dc.subject.keywordPlus | ADSORPTION | - |
dc.subject.keywordPlus | BIODEGRADABILITY | - |
dc.subject.keywordPlus | TRANSFORMATION | - |
dc.subject.keywordPlus | DEGRADATION | - |
dc.subject.keywordPlus | REDUCTION | - |
dc.subject.keywordPlus | KINETICS | - |
dc.subject.keywordPlus | SORPTION | - |
dc.subject.keywordPlus | SYSTEM | - |
dc.subject.keywordAuthor | Iodine | - |
dc.subject.keywordAuthor | Detoxification | - |
dc.subject.keywordAuthor | Zero-valent iron | - |
dc.subject.keywordAuthor | Reduction | - |
dc.subject.keywordAuthor | Biotreatment | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea+82-2-3290-2963
COPYRIGHT © 2021 Korea University. All Rights Reserved.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.