Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Characterizations of the harmonic Bergman space on the ball

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, Eun Sun-
dc.contributor.authorNa, Kyunguk-
dc.date.accessioned2021-09-08T17:18:58Z-
dc.date.available2021-09-08T17:18:58Z-
dc.date.issued2009-05-01-
dc.identifier.issn0022-247X-
dc.identifier.issn1096-0813-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/120071-
dc.description.abstractIn the harmonic Bergman space with the normal weight, we prove norm equivalences in terms of radial, gradient and invariant gradient norms. Using this, we give new characterizations in terms of Lipschitz type conditions with Euclidean, pseudo-hyperbolic and hyperbolic metrics on the ball. (C) 2008 Elsevier Inc. All rights reserved.-
dc.format.extent11-
dc.language영어-
dc.language.isoENG-
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCE-
dc.titleCharacterizations of the harmonic Bergman space on the ball-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1016/j.jmaa.2008.11.085-
dc.identifier.scopusid2-s2.0-58149476571-
dc.identifier.wosid000264987000039-
dc.identifier.bibliographicCitationJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, v.353, no.1, pp 375 - 385-
dc.citation.titleJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS-
dc.citation.volume353-
dc.citation.number1-
dc.citation.startPage375-
dc.citation.endPage385-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordAuthorHarmonic Bergman space-
dc.subject.keywordAuthorHyperbolic metric-
dc.subject.keywordAuthorLipschitz condition-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE