Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Marginalized random effects models for multivariate longitudinal binary data

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Keunbaik-
dc.contributor.authorJoo, Yongsung-
dc.contributor.authorYoo, Jae Keun-
dc.contributor.authorLee, JungBok-
dc.date.accessioned2021-09-08T18:05:31Z-
dc.date.available2021-09-08T18:05:31Z-
dc.date.issued2009-04-15-
dc.identifier.issn0277-6715-
dc.identifier.issn1097-0258-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/120239-
dc.description.abstractGeneralized linear models with random effects are often used to explain the serial dependence of longitudinal categorical data. Marginalized random effects models (MREMs) permit likelihood-based estimations of marginal mean parameters and also explain the serial dependence of longitudinal data. In this paper, we extend the MREM to accommodate multivariate longitudinal binary data using a new covariance matrix with a Kronecker decomposition, which easily explains both the serial dependence and time-specific response correlation. A maximum marginal likelihood estimation is proposed utilizing a quasi-Newton algorithm with quasi-Monte Carlo integration of the random effects. Our approach is applied to analyze metabolic syndrome data from the Korean Genomic Epidemiology Study for Korean adults. Copyright (C) 2009 John Wiley & Sons, Ltd.-
dc.format.extent17-
dc.language영어-
dc.language.isoENG-
dc.publisherWILEY-
dc.titleMarginalized random effects models for multivariate longitudinal binary data-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1002/sim.3534-
dc.identifier.scopusid2-s2.0-65649151036-
dc.identifier.wosid000264645400006-
dc.identifier.bibliographicCitationSTATISTICS IN MEDICINE, v.28, no.8, pp 1284 - 1300-
dc.citation.titleSTATISTICS IN MEDICINE-
dc.citation.volume28-
dc.citation.number8-
dc.citation.startPage1284-
dc.citation.endPage1300-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematical & Computational Biology-
dc.relation.journalResearchAreaPublic, Environmental & Occupational Health-
dc.relation.journalResearchAreaMedical Informatics-
dc.relation.journalResearchAreaResearch & Experimental Medicine-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematical & Computational Biology-
dc.relation.journalWebOfScienceCategoryPublic, Environmental & Occupational Health-
dc.relation.journalWebOfScienceCategoryMedical Informatics-
dc.relation.journalWebOfScienceCategoryMedicine, Research & Experimental-
dc.relation.journalWebOfScienceCategoryStatistics & Probability-
dc.subject.keywordPlusOUTCOMES-
dc.subject.keywordPlusGENDER-
dc.subject.keywordAuthormultivariate longitudinal data-
dc.subject.keywordAuthormarginalized models-
dc.subject.keywordAuthorCohort Study-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE