Marginalized random effects models for multivariate longitudinal binary data
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, Keunbaik | - |
dc.contributor.author | Joo, Yongsung | - |
dc.contributor.author | Yoo, Jae Keun | - |
dc.contributor.author | Lee, JungBok | - |
dc.date.accessioned | 2021-09-08T18:05:31Z | - |
dc.date.available | 2021-09-08T18:05:31Z | - |
dc.date.issued | 2009-04-15 | - |
dc.identifier.issn | 0277-6715 | - |
dc.identifier.issn | 1097-0258 | - |
dc.identifier.uri | https://scholar.korea.ac.kr/handle/2021.sw.korea/120239 | - |
dc.description.abstract | Generalized linear models with random effects are often used to explain the serial dependence of longitudinal categorical data. Marginalized random effects models (MREMs) permit likelihood-based estimations of marginal mean parameters and also explain the serial dependence of longitudinal data. In this paper, we extend the MREM to accommodate multivariate longitudinal binary data using a new covariance matrix with a Kronecker decomposition, which easily explains both the serial dependence and time-specific response correlation. A maximum marginal likelihood estimation is proposed utilizing a quasi-Newton algorithm with quasi-Monte Carlo integration of the random effects. Our approach is applied to analyze metabolic syndrome data from the Korean Genomic Epidemiology Study for Korean adults. Copyright (C) 2009 John Wiley & Sons, Ltd. | - |
dc.format.extent | 17 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | WILEY | - |
dc.title | Marginalized random effects models for multivariate longitudinal binary data | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1002/sim.3534 | - |
dc.identifier.scopusid | 2-s2.0-65649151036 | - |
dc.identifier.wosid | 000264645400006 | - |
dc.identifier.bibliographicCitation | STATISTICS IN MEDICINE, v.28, no.8, pp 1284 - 1300 | - |
dc.citation.title | STATISTICS IN MEDICINE | - |
dc.citation.volume | 28 | - |
dc.citation.number | 8 | - |
dc.citation.startPage | 1284 | - |
dc.citation.endPage | 1300 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Mathematical & Computational Biology | - |
dc.relation.journalResearchArea | Public, Environmental & Occupational Health | - |
dc.relation.journalResearchArea | Medical Informatics | - |
dc.relation.journalResearchArea | Research & Experimental Medicine | - |
dc.relation.journalResearchArea | Mathematics | - |
dc.relation.journalWebOfScienceCategory | Mathematical & Computational Biology | - |
dc.relation.journalWebOfScienceCategory | Public, Environmental & Occupational Health | - |
dc.relation.journalWebOfScienceCategory | Medical Informatics | - |
dc.relation.journalWebOfScienceCategory | Medicine, Research & Experimental | - |
dc.relation.journalWebOfScienceCategory | Statistics & Probability | - |
dc.subject.keywordPlus | OUTCOMES | - |
dc.subject.keywordPlus | GENDER | - |
dc.subject.keywordAuthor | multivariate longitudinal data | - |
dc.subject.keywordAuthor | marginalized models | - |
dc.subject.keywordAuthor | Cohort Study | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea+82-2-3290-2963
COPYRIGHT © 2021 Korea University. All Rights Reserved.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.