Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

The control of valence state: How V/TiO2 catalyst is hindering the deactivation using the mechanochemical method

Full metadata record
DC Field Value Language
dc.contributor.authorSeo, P.-W.-
dc.contributor.authorLee, J.-Y.-
dc.contributor.authorShim, K.-S.-
dc.contributor.authorHong, S.-H.-
dc.contributor.authorHong, S.-C.-
dc.contributor.authorHong, S.-I.-
dc.date.accessioned2021-09-09T00:25:17Z-
dc.date.available2021-09-09T00:25:17Z-
dc.date.created2021-06-17-
dc.date.issued2009-
dc.identifier.issn0304-3894-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/121892-
dc.description.abstractVarious experiments were conducted to improve durability against SO2 by impregnating the same amount of vanadium in TiO2 which had the various physical properties. According to those catalysts, the degree of deactivation by SO2 had various results, and it was found that the production of unreacted NH3 in selective catalytic reduction reaction should be low. Based on X-ray photoelectron spectroscopy analysis, O2 on-off test, O2 reoxidation test and H2-temperature programmed reduction experiment, the redox capacity of catalyst was improved due to increasing of non-stoichiometric compounds. Such a non-stoichiometric oxide and redox capacity of catalyst can be enhanced by the ball-milling process, and the production of ammonium sulfate salt can be more easily inhibited by the superior oxidation-reduction capacity of catalyst. We found that this result is caused by producing and increasing of Vx+ (x ≤ 4), Tiy+ (y ≤ 3) which are non-stoichiometric chemical species of catalyst.-
dc.languageEnglish-
dc.language.isoen-
dc.subjectAmmonium sulfates-
dc.subjectBall-milling process-
dc.subjectChemical species-
dc.subjectDeactivation-
dc.subjectMechanochemical method-
dc.subjectNon-stoichiometric-
dc.subjectNon-stoichiometric compounds-
dc.subjectRe oxidations-
dc.subjectReduction capacities-
dc.subjectSelective catalytic reduction reactions-
dc.subjectTemperature-programmed reductions-
dc.subjectValence state-
dc.subjectX-ray photoelectron spectroscopies-
dc.subjectAmmonium compounds-
dc.subjectBall milling-
dc.subjectMilling (machining)-
dc.subjectSelective catalytic reduction-
dc.subjectTransition metals-
dc.subjectX ray photoelectron spectroscopy-
dc.subjectCatalyst deactivation-
dc.subjectammonia-
dc.subjectammonium sulfate-
dc.subjectsulfur dioxide-
dc.subjecttitanium dioxide-
dc.subjectvanadium-
dc.subjectcatalysis-
dc.subjectcatalyst-
dc.subjectoxidation-
dc.subjectphysical property-
dc.subjectreduction-
dc.subjectstoichiometry-
dc.subjectsulfate-
dc.subjectsulfur dioxide-
dc.subjecttitanium-
dc.subjectvanadium-
dc.subjectX-ray spectroscopy-
dc.subjectarticle-
dc.subjectcatalysis-
dc.subjectoxidation-
dc.subjecttemperature sensitivity-
dc.subjectAmmonia-
dc.subjectCatalysis-
dc.subjectOxidation-Reduction-
dc.subjectSulfur Dioxide-
dc.subjectTitanium-
dc.subjectVanadium-
dc.titleThe control of valence state: How V/TiO2 catalyst is hindering the deactivation using the mechanochemical method-
dc.typeArticle-
dc.contributor.affiliatedAuthorHong, S.-I.-
dc.identifier.doi10.1016/j.jhazmat.2008.09.119-
dc.identifier.scopusid2-s2.0-64549163262-
dc.identifier.bibliographicCitationJournal of Hazardous Materials, v.165, no.1-3, pp.39 - 47-
dc.relation.isPartOfJournal of Hazardous Materials-
dc.citation.titleJournal of Hazardous Materials-
dc.citation.volume165-
dc.citation.number1-3-
dc.citation.startPage39-
dc.citation.endPage47-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusAmmonium sulfates-
dc.subject.keywordPlusBall-milling process-
dc.subject.keywordPlusChemical species-
dc.subject.keywordPlusDeactivation-
dc.subject.keywordPlusMechanochemical method-
dc.subject.keywordPlusNon-stoichiometric-
dc.subject.keywordPlusNon-stoichiometric compounds-
dc.subject.keywordPlusRe oxidations-
dc.subject.keywordPlusReduction capacities-
dc.subject.keywordPlusSelective catalytic reduction reactions-
dc.subject.keywordPlusTemperature-programmed reductions-
dc.subject.keywordPlusValence state-
dc.subject.keywordPlusX-ray photoelectron spectroscopies-
dc.subject.keywordPlusAmmonium compounds-
dc.subject.keywordPlusBall milling-
dc.subject.keywordPlusMilling (machining)-
dc.subject.keywordPlusSelective catalytic reduction-
dc.subject.keywordPlusTransition metals-
dc.subject.keywordPlusX ray photoelectron spectroscopy-
dc.subject.keywordPlusCatalyst deactivation-
dc.subject.keywordPlusammonia-
dc.subject.keywordPlusammonium sulfate-
dc.subject.keywordPlussulfur dioxide-
dc.subject.keywordPlustitanium dioxide-
dc.subject.keywordPlusvanadium-
dc.subject.keywordPluscatalysis-
dc.subject.keywordPluscatalyst-
dc.subject.keywordPlusoxidation-
dc.subject.keywordPlusphysical property-
dc.subject.keywordPlusreduction-
dc.subject.keywordPlusstoichiometry-
dc.subject.keywordPlussulfate-
dc.subject.keywordPlussulfur dioxide-
dc.subject.keywordPlustitanium-
dc.subject.keywordPlusvanadium-
dc.subject.keywordPlusX-ray spectroscopy-
dc.subject.keywordPlusarticle-
dc.subject.keywordPluscatalysis-
dc.subject.keywordPlusoxidation-
dc.subject.keywordPlustemperature sensitivity-
dc.subject.keywordPlusAmmonia-
dc.subject.keywordPlusCatalysis-
dc.subject.keywordPlusOxidation-Reduction-
dc.subject.keywordPlusSulfur Dioxide-
dc.subject.keywordPlusTitanium-
dc.subject.keywordPlusVanadium-
dc.subject.keywordAuthorDeactivation-
dc.subject.keywordAuthorMechanochemical method-
dc.subject.keywordAuthorNon-stoichiometric-
dc.subject.keywordAuthorSelective catalytic reduction-
dc.subject.keywordAuthorValence state-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Chemical and Biological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE