Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

An example-based face hallucination method for single-frame, low-resolution facial images

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Jeong-Seon-
dc.contributor.authorLee, Seon-Whan-
dc.date.accessioned2021-09-09T03:54:04Z-
dc.date.available2021-09-09T03:54:04Z-
dc.date.created2021-06-10-
dc.date.issued2008-10-
dc.identifier.issn1057-7149-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/122617-
dc.description.abstractThis paper proposes a face hallucination method for the reconstruction of high-resolution facial images from single-frame, low-resolution facial images. The proposed method has been derived from example-based hallucination methods and morphable face models. First, we propose a recursive error back-projection method to compensate for residual errors, and a region-based reconstruction method to preserve characteristics of local facial regions. Then, we define an extended morphable face model, in which an extended face is composed of the interpolated high-resolution face from a given low-resolution face, and its original high-resolution equivalent. Then, the extended face is separated into an extended shape and an extended texture. We performed various hallucination experiments using the MPI XM2VTS, and KF databases, compared the reconstruction errors, structural similarity index, and recognition rates, and showed the effects of face detection errors and shape estimation errors. The encouraging results demonstrate that the proposed methods can improve the performance of face recognition systems. Especially the proposed method can enhance the resolution of single-frame, low-resolution facial images.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.subjectSUPERRESOLUTION IMAGE-
dc.subjectRECONSTRUCTION-
dc.titleAn example-based face hallucination method for single-frame, low-resolution facial images-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Seon-Whan-
dc.identifier.doi10.1109/TIP.2008.2001394-
dc.identifier.scopusid2-s2.0-52549116762-
dc.identifier.wosid000259372100006-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON IMAGE PROCESSING, v.17, no.10, pp.1806 - 1816-
dc.relation.isPartOfIEEE TRANSACTIONS ON IMAGE PROCESSING-
dc.citation.titleIEEE TRANSACTIONS ON IMAGE PROCESSING-
dc.citation.volume17-
dc.citation.number10-
dc.citation.startPage1806-
dc.citation.endPage1816-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordPlusSUPERRESOLUTION IMAGE-
dc.subject.keywordPlusRECONSTRUCTION-
dc.subject.keywordAuthorerror back-projection-
dc.subject.keywordAuthorexample-based reconstruction-
dc.subject.keywordAuthorextended morphable face model-
dc.subject.keywordAuthorface hallucination-
dc.subject.keywordAuthorface recognition-
dc.subject.keywordAuthorregion-based reconstruction-
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Artificial Intelligence > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Seong Whan photo

Lee, Seong Whan
인공지능학과
Read more

Altmetrics

Total Views & Downloads

BROWSE