Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

New normalization methods using support vector machine quantile regression approach in microarray analysis

Full metadata record
DC Field Value Language
dc.contributor.authorSohn, Insuk-
dc.contributor.authorKim, Sujong-
dc.contributor.authorHwang, Changha-
dc.contributor.authorLee, Jae Won-
dc.date.accessioned2021-09-09T09:15:33Z-
dc.date.available2021-09-09T09:15:33Z-
dc.date.issued2008-04-15-
dc.identifier.issn0167-9473-
dc.identifier.issn1872-7352-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/123730-
dc.description.abstractThere are many sources of systematic variations in cDNA microarray experiments which affect the measured gene expression levels. Print-tip lowess normalization is widely used in situations where dye biases can depend on spot overall intensity and/or spatial location within the array. However, print-tip lowess normalization performs poorly in situations where error variability for each gene is heterogeneous over intensity ranges. We first develop support vector machine quantile regression (SVMQR) by extending support vector machine regression (SVMR) for the estimation of linear and nonlinear quantile regressions, and then propose some new print-tip normalization methods based on SVMR and SVMQR. We apply our proposed normalization methods to previous cDNA microarray data of apolipoprotein AI-knockout (apoAI-KO) mice, diet-induced obese mice, and genistein-fed obese mice. From our comparative analyses, we find that our proposed methods perform better than the existing print-tip lowess normalization method. (c) 2008 Elsevier B.V. All rights reserved.-
dc.format.extent12-
dc.language영어-
dc.language.isoENG-
dc.publisherELSEVIER SCIENCE BV-
dc.titleNew normalization methods using support vector machine quantile regression approach in microarray analysis-
dc.typeArticle-
dc.publisher.location네덜란드-
dc.identifier.doi10.1016/j.csda.2008.02.006-
dc.identifier.scopusid2-s2.0-41249087966-
dc.identifier.wosid000255624000015-
dc.identifier.bibliographicCitationCOMPUTATIONAL STATISTICS & DATA ANALYSIS, v.52, no.8, pp 4104 - 4115-
dc.citation.titleCOMPUTATIONAL STATISTICS & DATA ANALYSIS-
dc.citation.volume52-
dc.citation.number8-
dc.citation.startPage4104-
dc.citation.endPage4115-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryStatistics & Probability-
dc.subject.keywordPlusGENE-EXPRESSION PROFILES-
dc.subject.keywordPlusSTATISTICAL-METHODS-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Political Science & Economics > Department of Statistics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher LEE, JAE WON photo

LEE, JAE WON
College of Political Science & Economics (Department of Statistics)
Read more

Altmetrics

Total Views & Downloads

BROWSE