Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

The Effects of Spatial Autocorrelation in Spatial Data Analyses

Full metadata record
DC Field Value Language
dc.contributor.author김영호-
dc.date.accessioned2021-09-09T15:01:06Z-
dc.date.available2021-09-09T15:01:06Z-
dc.date.created2021-06-17-
dc.date.issued2008-
dc.identifier.issn1225-3766-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/125089-
dc.description.abstractThe use of Ordinary Least Square (OLS) models for spatial data analyses frequently comes with theproblem of spatial autocorrelation in disturbance causing over/under estimated standard error of coefficient. Thesebiased standard errors make inferential tests invalid and the model inefficient in OLS framework. Since spatialautocorrelation mostly comes from intrinsic features of spatial data dependence, the problems of spatial autocorrelationare widely and frequently noted in literature. However, this study points out that previous notions on spatialautocorrelation in OLS framework may be insufficient if not wrong. Using eigenvectors and hexagon shapetransformation in controlled experiments, this study presents exact mechanism and effects of spatial autocorrelation inOLS models. Results indicates that standard errors of coefficients are decided by 1) spatial pattern of correspondingvariable, 2) correlation among the exogenous variables, and 3) parameter correlation in the model rather than simplyspatial autocorrelation in disturbance.-
dc.languageEnglish-
dc.language.isoen-
dc.publisher국토지리학회-
dc.titleThe Effects of Spatial Autocorrelation in Spatial Data Analyses-
dc.title.alternativeThe Effects of Spatial Autocorrelation in Spatial Data Analyses-
dc.typeArticle-
dc.contributor.affiliatedAuthor김영호-
dc.identifier.bibliographicCitation국토지리학회지, v.42, no.3, pp.343 - 361-
dc.relation.isPartOf국토지리학회지-
dc.citation.title국토지리학회지-
dc.citation.volume42-
dc.citation.number3-
dc.citation.startPage343-
dc.citation.endPage361-
dc.type.rimsART-
dc.identifier.kciidART001280706-
dc.description.journalClass2-
dc.description.journalRegisteredClasskci-
dc.subject.keywordAuthorSpatial autocorrelation-
dc.subject.keywordAuthorEigenvector-
dc.subject.keywordAuthorOrdinary Least Square regression-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Education > Department of Geography Education > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Young ho photo

Kim, Young ho
사범대학 (지리교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE