Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A bioactive foam reactor for the removal of volatile organic compounds: system performance and model development

Full metadata record
DC Field Value Language
dc.contributor.authorSong, JiHyeon-
dc.contributor.authorKim, Yongsik-
dc.contributor.authorSon, Younggyu-
dc.contributor.authorKhim, Jeehyeong-
dc.date.accessioned2021-09-09T17:01:16Z-
dc.date.available2021-09-09T17:01:16Z-
dc.date.created2021-06-10-
dc.date.issued2007-11-
dc.identifier.issn1615-7591-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/125679-
dc.description.abstractA bioactive foam reactor (BFR), a novel bioreactor operated using surfactant foams and suspended microorganisms for the treatment of gaseous toluene, was investigated to characterize its performance with respect to the mass transfer and biodegradation rates. The BFR system consisted of two reactors in series; a foam column for toluene mass transfer using fine bubbles and a cell reservoir where suspended microorganisms actively biodegraded toluene. In this study, a series of short-term experiments demonstrated that the BFR could achieve stable removal performance and a high elimination capacity (EC) for toluene at 100.3 g/m(3)/h. A numerical model, combining mass balance equations for the mass transfer and subsequent biodegradation, resulted in reasonable agreement with the experimental findings. At an inlet toluene concentration of 100 ppm(v), the toluene concentration in the liquid phase remained extremely low, indicating that the microbial activity was not hindered in the BFR system. However, the experimental and model prediction results showed that the actual mass of toluene transferred into the liquid phase was not closely balanced with the amount of toluene biodegraded in the BFR used in this study. Consequently, methods, such as increasing the effective volume of the foam column or the mass transfer coefficient, need to be implemented to achieve higher toluene EC and better BFR performance.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherSPRINGER-
dc.subjectBIOREACTORS-
dc.subjectBIOFILTERS-
dc.subjectOPERATION-
dc.subjectDESIGN-
dc.titleA bioactive foam reactor for the removal of volatile organic compounds: system performance and model development-
dc.typeArticle-
dc.contributor.affiliatedAuthorKhim, Jeehyeong-
dc.identifier.doi10.1007/s00449-007-0139-7-
dc.identifier.scopusid2-s2.0-35348851347-
dc.identifier.wosid000250204900006-
dc.identifier.bibliographicCitationBIOPROCESS AND BIOSYSTEMS ENGINEERING, v.30, no.6, pp.439 - 446-
dc.relation.isPartOfBIOPROCESS AND BIOSYSTEMS ENGINEERING-
dc.citation.titleBIOPROCESS AND BIOSYSTEMS ENGINEERING-
dc.citation.volume30-
dc.citation.number6-
dc.citation.startPage439-
dc.citation.endPage446-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.subject.keywordPlusBIOREACTORS-
dc.subject.keywordPlusBIOFILTERS-
dc.subject.keywordPlusOPERATION-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordAuthorbioactive foam reactor-
dc.subject.keywordAuthorsurfactant-
dc.subject.keywordAuthorvolatile organic compounds-
dc.subject.keywordAuthormass transfer-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Civil, Environmental and Architectural Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Khim, Jee hyeong photo

Khim, Jee hyeong
공과대학 (건축사회환경공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE