Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Support vector machine using K-means clustering

Full metadata record
DC Field Value Language
dc.contributor.authorLee, S. J.-
dc.contributor.authorPark, C.-
dc.contributor.authorJhun, M.-
dc.contributor.authorKo, J-Y.-
dc.date.accessioned2021-09-09T17:25:46Z-
dc.date.available2021-09-09T17:25:46Z-
dc.date.issued2007-03-
dc.identifier.issn1226-3192-
dc.identifier.issn1876-4231-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/125807-
dc.description.abstractThe support vector machine has been successful in many applications because of its flexibility and high accuracy. However, when a training data set is large or imbalanced, the support vector machine may suffer from significant computational problem or loss of accuracy in predicting minority classes. We propose a modified version of the support vector machine using the K-means clustering that exploits the information in class labels during the clustering process. For large data sets, our method can save the computation time by reducing the number of data points without significant loss of accuracy. Moreover, our method can deal with imbalanced data sets effectively by alleviating the influence of dominant class.-
dc.format.extent8-
dc.language영어-
dc.language.isoENG-
dc.publisherSPRINGER HEIDELBERG-
dc.titleSupport vector machine using K-means clustering-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.wosid000254941500010-
dc.identifier.bibliographicCitationJOURNAL OF THE KOREAN STATISTICAL SOCIETY, v.36, no.1, pp 175 - 182-
dc.citation.titleJOURNAL OF THE KOREAN STATISTICAL SOCIETY-
dc.citation.volume36-
dc.citation.number1-
dc.citation.startPage175-
dc.citation.endPage182-
dc.type.docTypeArticle-
dc.identifier.kciidART001045900-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryStatistics & Probability-
dc.subject.keywordAuthorclass imbalance-
dc.subject.keywordAuthorK-means clustering-
dc.subject.keywordAuthorsupport vector machine-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Political Science & Economics > Department of Statistics > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE