Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Bootstrap Confidence Intervals for the INAR(p) Process

Full metadata record
DC Field Value Language
dc.contributor.author김희영-
dc.contributor.author박유성-
dc.date.accessioned2021-09-09T17:54:12Z-
dc.date.available2021-09-09T17:54:12Z-
dc.date.issued2006-
dc.identifier.issn2287-7843-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/125944-
dc.description.abstractThe distributional properties of forecasts in an integer-valued time series model have not been discovered yet mainly because of the complexity arising from the binomial thinning operator. We propose two bootstrap methods to obtain nonparametric prediction intervals for an integer-valued autoregressive model : one accomodates the variation of estimating parameters and the other does not. Contrary to the results of the continuous ARMA model, we show that the latter is beter than the former in forecasting the future values of the integer-valued autoregressive model.-
dc.format.extent16-
dc.language한국어-
dc.language.isoKOR-
dc.publisher한국통계학회-
dc.titleBootstrap Confidence Intervals for the INAR(p) Process-
dc.title.alternativeBootstrap Confidence Intervals for the INAR(p) Process-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.bibliographicCitationCommunications for Statistical Applications and Methods, v.13, no.2, pp 343 - 358-
dc.citation.titleCommunications for Statistical Applications and Methods-
dc.citation.volume13-
dc.citation.number2-
dc.citation.startPage343-
dc.citation.endPage358-
dc.identifier.kciidART001117872-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasskci-
dc.subject.keywordAuthorStationary process-
dc.subject.keywordAuthorInteger valued time series-
dc.subject.keywordAuthorPrediction interval-
dc.subject.keywordAuthorSieve Bootstrap.-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Public Policy > Division of Big Data Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Hee Young photo

Kim, Hee Young
College of Public Policy (Division of Big Data Science)
Read more

Altmetrics

Total Views & Downloads

BROWSE