Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A multi-commodity network model for optimal quantum reversible circuit synthesis

Full metadata record
DC Field Value Language
dc.contributor.authorJung, Jihye-
dc.contributor.authorChoi, In-Chan-
dc.date.accessioned2021-11-18T03:41:06Z-
dc.date.available2021-11-18T03:41:06Z-
dc.date.created2021-08-30-
dc.date.issued2021-06-22-
dc.identifier.issn1932-6203-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/127831-
dc.description.abstractQuantum computing is a newly emerging computing environment that has recently attracted intense research interest in improving the output fidelity, fully utilizing its high computing power from both hardware and software perspectives. In particular, several attempts have been made to reduce the errors in quantum computing algorithms through the efficient synthesis of quantum circuits. In this study, we present an application of an optimization model for synthesizing quantum circuits with minimum implementation costs to lower the error rates by forming a simpler circuit. Our model has a unique structure that combines the arc-subset selection problem with a conventional multi-commodity network flow model. The model targets the circuit synthesis with multiple control Toffoli gates to implement Boolean reversible functions that are often used as a key component in many quantum algorithms. Compared to previous studies, the proposed model has a unifying yet straightforward structure for exploiting the operational characteristics of quantum gates. Our computational experiment shows the potential of the proposed model, obtaining quantum circuits with significantly lower quantum costs compared to prior studies. The proposed model is also applicable to various other fields where reversible logic is utilized, such as low-power computing, fault-tolerant designs, and DNA computing. In addition, our model can be applied to network-based problems, such as logistics distribution and time-stage network problems.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherPUBLIC LIBRARY SCIENCE-
dc.subjectDECOMPOSITION ALGORITHM-
dc.subjectLOGIC-
dc.subjectOPTIMIZATION-
dc.subjectCOMPUTATION-
dc.titleA multi-commodity network model for optimal quantum reversible circuit synthesis-
dc.typeArticle-
dc.contributor.affiliatedAuthorChoi, In-Chan-
dc.identifier.doi10.1371/journal.pone.0253140-
dc.identifier.scopusid2-s2.0-85108458481-
dc.identifier.wosid000671691200028-
dc.identifier.bibliographicCitationPLOS ONE, v.16, no.6-
dc.relation.isPartOfPLOS ONE-
dc.citation.titlePLOS ONE-
dc.citation.volume16-
dc.citation.number6-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.subject.keywordPlusDECOMPOSITION ALGORITHM-
dc.subject.keywordPlusLOGIC-
dc.subject.keywordPlusOPTIMIZATION-
dc.subject.keywordPlusCOMPUTATION-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Industrial and Management Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher CHOI, In Chan photo

CHOI, In Chan
공과대학 (산업경영공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE