Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Shaping of a Metal-Organic Framework-Polymer Composite and Its CO2 Adsorption Performances from Humid Indoor Air

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Jinkyoung-
dc.contributor.authorChae, Yun Seok-
dc.contributor.authorKang, Dong Won-
dc.contributor.authorKang, Minjung-
dc.contributor.authorChoe, Jong Hyeak-
dc.contributor.authorKim, Saemi-
dc.contributor.authorKim, Jee Yeon-
dc.contributor.authorJeong, Yong Won-
dc.contributor.authorHong, Chang Seop-
dc.date.accessioned2021-11-18T12:40:16Z-
dc.date.available2021-11-18T12:40:16Z-
dc.date.created2021-08-30-
dc.date.issued2021-06-02-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/127872-
dc.description.abstractDiamine-functionalized metal-organic frameworks (MOFs) are known as desirable adsorbents that can capture CO2 even at low pressures, but the humidity instability of bare MOF powders as well as their shaping have not yet adequately addressed for practical applications. Herein, we report an effective synthetic strategy for fabricating millimeter-sized MOF/poly(vinylidene fluoride) (PVDF) composite beads with different amounts of PVDF binders (30, 40, and 50 wt %) via a phase inversion method, followed by the postfunctionalization of 1-ethylpropane-1,3-diamine (epn). Compared with the pristine MOF powder, the diamine-grafted bead, epn-MOF/PVDF40, upon mixing with 40% binder polymers, exhibited a superior long-term performance without structural collapse for up to 1 month. The existence of the hydrophobic PVDF polymer in the composite material is responsible for such durability. This work provides a promising preparative route toward developing stable and shaped MOFs for the removal of indoor CO2.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.subjectCARBON-DIOXIDE-
dc.subjectFLUE-GAS-
dc.subjectCAPTURE-
dc.titleShaping of a Metal-Organic Framework-Polymer Composite and Its CO2 Adsorption Performances from Humid Indoor Air-
dc.typeArticle-
dc.contributor.affiliatedAuthorHong, Chang Seop-
dc.identifier.doi10.1021/acsami.1c06089-
dc.identifier.scopusid2-s2.0-85107711448-
dc.identifier.wosid000659315800104-
dc.identifier.bibliographicCitationACS APPLIED MATERIALS & INTERFACES, v.13, no.21, pp.25421 - 25427-
dc.relation.isPartOfACS APPLIED MATERIALS & INTERFACES-
dc.citation.titleACS APPLIED MATERIALS & INTERFACES-
dc.citation.volume13-
dc.citation.number21-
dc.citation.startPage25421-
dc.citation.endPage25427-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusCARBON-DIOXIDE-
dc.subject.keywordPlusFLUE-GAS-
dc.subject.keywordPlusCAPTURE-
dc.subject.keywordAuthormetal-organic framework-
dc.subject.keywordAuthorindoor air capture-
dc.subject.keywordAuthordiamine functionalization-
dc.subject.keywordAuthorcomposite materials-
dc.subject.keywordAuthorMOF shaping-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > Department of Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE