Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Deep Clustering for Improved Inter-Cluster Separability and Intra-Cluster Homogeneity with Cohesive Loss

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Byeonghak-
dc.contributor.authorLoew, Murray-
dc.contributor.authorHan, David K.-
dc.contributor.authorKo, Hanseok-
dc.date.accessioned2021-11-20T12:40:50Z-
dc.date.available2021-11-20T12:40:50Z-
dc.date.created2021-08-30-
dc.date.issued2021-05-
dc.identifier.issn0916-8532-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/128116-
dc.description.abstractTo date, many studies have employed clustering for the classification of unlabeled data. Deep separate clustering applies several deep learning models to conventional clustering algorithms to more clearly separate the distribution of the clusters. In this paper, we employ a convolutional autoencoder to learn the features of input images. Following this, k-means clustering is conducted using the encoded layer features learned by the convolutional autoencoder. A center loss function is then added to aggregate the data points into clusters to increase the intra-cluster homogeneity. Finally, we calculate and increase the inter-cluster separability. We combine all loss functions into a single global objective function. Our new deep clustering method surpasses the performance of existing clustering approaches when compared in experiments under the same conditions.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherIEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG-
dc.titleDeep Clustering for Improved Inter-Cluster Separability and Intra-Cluster Homogeneity with Cohesive Loss-
dc.typeArticle-
dc.contributor.affiliatedAuthorKo, Hanseok-
dc.identifier.doi10.1587/transinf.2020EDL8138-
dc.identifier.scopusid2-s2.0-85106722001-
dc.identifier.wosid000646183700029-
dc.identifier.bibliographicCitationIEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, v.E104D, no.5, pp.776 - 780-
dc.relation.isPartOfIEICE TRANSACTIONS ON INFORMATION AND SYSTEMS-
dc.citation.titleIEICE TRANSACTIONS ON INFORMATION AND SYSTEMS-
dc.citation.volumeE104D-
dc.citation.number5-
dc.citation.startPage776-
dc.citation.endPage780-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Software Engineering-
dc.subject.keywordAuthorseparate clustering-
dc.subject.keywordAuthorconvolutional autoencoder-
dc.subject.keywordAuthorintra-cluster homogeneity-
dc.subject.keywordAuthorinter-cluster separability-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ko, Han seok photo

Ko, Han seok
공과대학 (전기전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE