Deep Clustering for Improved Inter-Cluster Separability and Intra-Cluster Homogeneity with Cohesive Loss
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Byeonghak | - |
dc.contributor.author | Loew, Murray | - |
dc.contributor.author | Han, David K. | - |
dc.contributor.author | Ko, Hanseok | - |
dc.date.accessioned | 2021-11-20T12:40:50Z | - |
dc.date.available | 2021-11-20T12:40:50Z | - |
dc.date.created | 2021-08-30 | - |
dc.date.issued | 2021-05 | - |
dc.identifier.issn | 0916-8532 | - |
dc.identifier.uri | https://scholar.korea.ac.kr/handle/2021.sw.korea/128116 | - |
dc.description.abstract | To date, many studies have employed clustering for the classification of unlabeled data. Deep separate clustering applies several deep learning models to conventional clustering algorithms to more clearly separate the distribution of the clusters. In this paper, we employ a convolutional autoencoder to learn the features of input images. Following this, k-means clustering is conducted using the encoded layer features learned by the convolutional autoencoder. A center loss function is then added to aggregate the data points into clusters to increase the intra-cluster homogeneity. Finally, we calculate and increase the inter-cluster separability. We combine all loss functions into a single global objective function. Our new deep clustering method surpasses the performance of existing clustering approaches when compared in experiments under the same conditions. | - |
dc.language | English | - |
dc.language.iso | en | - |
dc.publisher | IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG | - |
dc.title | Deep Clustering for Improved Inter-Cluster Separability and Intra-Cluster Homogeneity with Cohesive Loss | - |
dc.type | Article | - |
dc.contributor.affiliatedAuthor | Ko, Hanseok | - |
dc.identifier.doi | 10.1587/transinf.2020EDL8138 | - |
dc.identifier.scopusid | 2-s2.0-85106722001 | - |
dc.identifier.wosid | 000646183700029 | - |
dc.identifier.bibliographicCitation | IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, v.E104D, no.5, pp.776 - 780 | - |
dc.relation.isPartOf | IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS | - |
dc.citation.title | IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS | - |
dc.citation.volume | E104D | - |
dc.citation.number | 5 | - |
dc.citation.startPage | 776 | - |
dc.citation.endPage | 780 | - |
dc.type.rims | ART | - |
dc.type.docType | Article | - |
dc.description.journalClass | 1 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Information Systems | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Software Engineering | - |
dc.subject.keywordAuthor | separate clustering | - |
dc.subject.keywordAuthor | convolutional autoencoder | - |
dc.subject.keywordAuthor | intra-cluster homogeneity | - |
dc.subject.keywordAuthor | inter-cluster separability | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
(02841) 서울특별시 성북구 안암로 14502-3290-1114
COPYRIGHT © 2021 Korea University. All Rights Reserved.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.