Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Theoretical Local Buckling Behavior of Thin-Walled UHPC Flanges Subjected to Pure Compressions

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Jeonghwa-
dc.contributor.authorKim, Seungjun-
dc.contributor.authorLee, Keesei-
dc.contributor.authorKang, Young Jong-
dc.date.accessioned2021-11-20T17:40:20Z-
dc.date.available2021-11-20T17:40:20Z-
dc.date.created2021-08-30-
dc.date.issued2021-05-
dc.identifier.issn1996-1944-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/128138-
dc.description.abstractTo enhance structural performance of concrete and reduce its self-weight, ultra-high-performance concrete (UHPC) with superior structural performance has been developed. As UHPC members with 180 MPa or above of the compressive strength can be designed, a rational assessment of thin-walled UHPC structural member may be required to prevent unexpected buckling failure that has not been considered while designing conventional concrete members. In this study, theoretical local buckling behavior of the thin-walled UHPC flanges was investigated using geometrical and material nonlinear analysis with imperfections (GMNIA). For the failure criteria of UHPC, a concrete damaged plasticity (CDP) model was applied to the analysis. Additionally, an elastic-perfectly plastic material model for steel materials was considered as a reference to establish differences in local buckling behavior between the UHPC and steel flanges. Finite element approaches were compared and verified based on test data in the literature. Finally, this study offers several important findings on theoretical local buckling and local bending behavior of UHPC flanges. The inelastic local buckling behavior of UHPC flanges was mainly affected by crack propagation due to its low tensile strength. Based on this study, possibility of the local buckling of UHPC flanges was discussed.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherMDPI-
dc.subjectCONCRETE BEAMS-
dc.subjectSTRENGTH-
dc.titleTheoretical Local Buckling Behavior of Thin-Walled UHPC Flanges Subjected to Pure Compressions-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, Seungjun-
dc.contributor.affiliatedAuthorKang, Young Jong-
dc.identifier.doi10.3390/ma14092130-
dc.identifier.scopusid2-s2.0-85105412976-
dc.identifier.wosid000650587200001-
dc.identifier.bibliographicCitationMATERIALS, v.14, no.9-
dc.relation.isPartOfMATERIALS-
dc.citation.titleMATERIALS-
dc.citation.volume14-
dc.citation.number9-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusCONCRETE BEAMS-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordAuthorultra-high-performance concrete-
dc.subject.keywordAuthorUHPC-
dc.subject.keywordAuthorlocal buckling-
dc.subject.keywordAuthorstability-
dc.subject.keywordAuthorthin-walled flange-
dc.subject.keywordAuthornonlinear analysis-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Civil, Environmental and Architectural Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Young Jong photo

Kang, Young Jong
College of Engineering (School of Civil, Environmental and Architectural Engineering)
Read more

Altmetrics

Total Views & Downloads

BROWSE