Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery

Authors
Wang, ChenchenLiu, LuojiaZhao, ShuoLiu, YanchenYang, YuboYu, HaijunLee, SuwonLee, Gi-HyeokKang, Yong-MookLiu, RongLi, FujunChen, Jun
Issue Date
15-4월-2021
Publisher
NATURE RESEARCH
Citation
NATURE COMMUNICATIONS, v.12, no.1
Indexed
SCIE
SCOPUS
Journal Title
NATURE COMMUNICATIONS
Volume
12
Number
1
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/128232
DOI
10.1038/s41467-021-22523-3
ISSN
2041-1723
Abstract
Layered transition-metal oxides have attracted intensive interest for cathode materials of sodium-ion batteries. However, they are hindered by the limited capacity and inferior phase transition due to the gliding of transition-metal layers upon Na+ extraction and insertion in the cathode materials. Here, we report that the large-sized K+ is riveted in the prismatic Na+ sites of P2-Na0.612K0.056MnO2 to enable more thermodynamically favorable Na+ vacancies. The Mn-O bonds are reinforced to reduce phase transition during charge and discharge. 0.901 Na+ per formula are reversibly extracted and inserted, in which only the two-phase transition of P2 <-> P'2 occurs at low voltages. It exhibits the highest specific capacity of 240.5 mAh g(-1) and energy density of 654 Wh kg(-1) based on the redox of Mn3+/Mn4+, and a capacity retention of 98.2% after 100 cycles. This investigation will shed lights on the tuneable chemical environments of transition-metal oxides for advanced cathode materials and promote the development of sodium-ion batteries. High-capacity and structural stable cathode materials are challenges for sodium-ion batteries. Here, the authors report a layered P2-Na0.612K0.056MnO2 with large-sized K+ riveted in the Na-layers to enable 0.9 Na+ (de)insertion with a reversible phase transition of P2-P'2.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Department of Materials Science and Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher KANG, YONG MOOK photo

KANG, YONG MOOK
공과대학 (신소재공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE