Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Homoleptic cyclometalated dibenzothiophene-NHC-iridium(iii) complexes for efficient blue phosphorescent organic light-emitting diodes

Authors
Yun, Bo-SunKim, So-YoenKim, Jin-HyoungSon, Ho-JinKang, Sang Ook
Issue Date
21-3월-2021
Publisher
ROYAL SOC CHEMISTRY
Citation
JOURNAL OF MATERIALS CHEMISTRY C, v.9, no.11, pp.4062 - 4069
Indexed
SCIE
SCOPUS
Journal Title
JOURNAL OF MATERIALS CHEMISTRY C
Volume
9
Number
11
Start Page
4062
End Page
4069
URI
https://scholar.korea.ac.kr/handle/2021.sw.korea/128397
DOI
10.1039/d0tc05832g
ISSN
2050-7526
Abstract
The NHC-Ir complexes f-IrSiPr, m-IrSiPr, and m-IrSMe, in which a dibenzothiophene (DBT) moiety is used to increase the emission efficiency for deep-blue phosphorescence, were synthesized and compared with the dibenzofuran (DBF)-based Ir complexes f-IrOMe and m-IrOMe. The differences in the ligand structure (DBF/DBT) or configuration (fac/mer) of these complexes led to different electrochemical and photophysical properties. The DBF moiety has a stronger electronegativity than DBT, resulting in a larger T-1-S-0 energy gap and a shorter emission wavelength than those of the DBT complexes. On the other hand, the meridional isomer has a mutually trans-phenyl ligand configuration that leads to lengthening of the transoid Ir-C bond and destabilizes the HOMO level, resulting in greater ease of oxidation, and the emission is red-shifted relative to the facial forms. Even with the differences in the origin of phosphorescence, replacement of the oxygen atom in the DBF unit with sulfur does not greatly alter the emission efficiency in either solution or film while achieving the same high-end deep-blue phosphorescence with unprecedented CIE coordinates of [0.14, 0.19] for m-IrSMe (EQE(max); 17.1%) and [0.14, 0.14] for m-IrOMe (EQE(max); 18.2%).
Files in This Item
There are no files associated with this item.
Appears in
Collections
Graduate School > Department of Advanced Materials Chemistry > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE