Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Evaluation of Thawing and Stress Restoration Method for Artificial Frozen Sandy Soils Using Sensors

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Jongchan-
dc.contributor.authorLee, Jong-Sub-
dc.contributor.authorArnold, Cody-
dc.contributor.authorKim, Sang Yeob-
dc.date.accessioned2021-11-23T07:40:52Z-
dc.date.available2021-11-23T07:40:52Z-
dc.date.created2021-08-30-
dc.date.issued2021-03-
dc.identifier.issn1424-8220-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/128451-
dc.description.abstractUndisturbed frozen samples can be efficiently obtained using the artificial ground freezing method. Thereafter, the restoration of in situ conditions, such as stress and density after thawing, is critical for laboratory testing. This study aims to experimentally explore the effects of thawing and the in situ stress restoration process on the geomechanical properties of sandy soils. Specimens were prepared at a relative density of 60% and frozen at -20 degrees C under the vertical stress of 100 kPa. After freezing, the specimens placed in the triaxial cell underwent thawing and consolidation phases with various drainage and confining stress conditions, followed by the shear phase. The elastic wave signals and axial deformation were measured during the entire protocol; the shear strength was evaluated from the triaxial compression test. Monotonic and cyclic simple shear tests were conducted to determine the packing density effect on liquefaction resistance. The results show that axial deformation, stiffness, and strength are minimized for a specimen undergoing drained thawing, restoring the initial stress during the consolidation phase, and that denser specimens are less susceptible to liquefaction. Results highlight that the thawing and stress restoration process should be considered to prevent the overestimation of stiffness, strength, and liquefaction resistance of sandy soils.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherMDPI-
dc.titleEvaluation of Thawing and Stress Restoration Method for Artificial Frozen Sandy Soils Using Sensors-
dc.typeArticle-
dc.contributor.affiliatedAuthorLee, Jong-Sub-
dc.identifier.doi10.3390/s21051916-
dc.identifier.scopusid2-s2.0-85102143068-
dc.identifier.wosid000628541700001-
dc.identifier.bibliographicCitationSENSORS, v.21, no.5, pp.1 - 18-
dc.relation.isPartOfSENSORS-
dc.citation.titleSENSORS-
dc.citation.volume21-
dc.citation.number5-
dc.citation.startPage1-
dc.citation.endPage18-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaInstruments & Instrumentation-
dc.relation.journalWebOfScienceCategoryChemistry, Analytical-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryInstruments & Instrumentation-
dc.subject.keywordAuthorartificial ground freezing-
dc.subject.keywordAuthorfrozen soils-
dc.subject.keywordAuthorliquefaction-
dc.subject.keywordAuthorstress restoration-
dc.subject.keywordAuthorthawing-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Civil, Environmental and Architectural Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher LEE, Jong Sub photo

LEE, Jong Sub
공과대학 (건축사회환경공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE