Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Stabilization of dissolvable biochar by soil minerals: Release reduction and organo-mineral complexes formation

Full metadata record
DC Field Value Language
dc.contributor.authorYang, F.-
dc.contributor.authorXu, Z.-
dc.contributor.authorHuang, Y.-
dc.contributor.authorTsang, D.C.W.-
dc.contributor.authorOk, Y.S.-
dc.contributor.authorZhao, L.-
dc.contributor.authorQiu, H.-
dc.contributor.authorXu, X.-
dc.contributor.authorCao, X.-
dc.date.accessioned2021-12-02T02:42:12Z-
dc.date.available2021-12-02T02:42:12Z-
dc.date.created2021-08-31-
dc.date.issued2021-06-15-
dc.identifier.issn0304-3894-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/128782-
dc.description.abstractBiochar has two existing forms in the moist soil environment, free dissolvable biochar (particle size < 0.45 μm) and undissolvable particles (particle size > 0.45 μm). The release and decomposition of dissolvable biochar from bulk biochar particles is a primary C loss pathway in biochar-amended soils, which would be reduced by their interactions with soil minerals. Most previous studies focused on the effect of feedstock types and pyrolysis conditions on dissolvable biochar stability, while few studies researched the interaction between dissolvable biochar and soil components, for instance the soil minerals, and its effect on the stability of dissolvable biochar. In this study, bentonite and goethite were selected as model soil minerals because of their differences in structure and surface types: negatively charged 2:1 type phyllosilicate (bentonite) and positively charged crystalline mineral (goethite). Dry-wet cycling was conducted to determine the effect of these two minerals on the release of dissolvable biochar from walnut shell-derived biochar particles. The stability of dissolvable biochar was measured by chemical oxidation and biodegradation. Both soil minerals reduced the release of dissolvable biochar by over 34% with the presence of Ca2+. Mechanisms of “Ca2+ bridging”, “ligand exchange” and “van der Waals attraction” contributed to the formation of dissolvable biochar-bentonite complexes, and Ca2+ promoted dissolvable biochar inserting into bentonite interlayer space, expanding D-spacing from 1.25 nm to 1.55 nm. However, “Ca2+ bridging” barely formed on goethite because of charge repulsion, indicating that the dissolvable biochar was bound with goethite mainly by “van der Waals attraction” and “ligand exchange”. Due to organo-mineral complexes formation, the chemical oxidation extent of dissolvable biochar was reduced by 22.8–36.5%, and the biodegradation extent was reduced by 72.7–85.0%, since the soil minerals are more effective to prevent the dissolvable biochar from being biodegraded. This study proved soil minerals and Ca2+ were beneficial for enhancing biochar stability, these observations assisted in assessing the biochar ability for long-term carbon sequestration. © 2021 Elsevier B.V.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherElsevier B.V.-
dc.subjectBentonite-
dc.subjectBiodegradation-
dc.subjectChemical stability-
dc.subjectLigands-
dc.subjectParticle size-
dc.subjectVan der Waals forces-
dc.subjectBiodegradation extent-
dc.subjectCarbon sequestration-
dc.subjectChemical oxidation-
dc.subjectCrystalline minerals-
dc.subjectInterlayer spaces-
dc.subjectNegatively charged-
dc.subjectPositively charged-
dc.subjectVan der Waals attraction-
dc.subjectStabilization-
dc.subjectbentonite-
dc.subjectbiochar-
dc.subjectcalcium ion-
dc.subjectcharcoal-
dc.subjectdissolved organic matter-
dc.subjectferric hydroxide-
dc.subjectmineral-
dc.subjectsoil organic matter-
dc.subjectunclassified drug-
dc.subjectbentonite-
dc.subjectbiochar-
dc.subjectbiodegradation-
dc.subjectcalcium-
dc.subjectdecomposition-
dc.subjectdissolution-
dc.subjectdissolved matter-
dc.subjectgoethite-
dc.subjectligand-
dc.subjectoxidation-
dc.subjectparticle size-
dc.subjectphyllosilicate-
dc.subjectpyrolysis-
dc.subjectreduction-
dc.subjectab initio calculation-
dc.subjectArticle-
dc.subjectbiodegradation-
dc.subjectcarbon sequestration-
dc.subjectcomplex formation-
dc.subjectcrystallization-
dc.subjectflocculation-
dc.subjectmineralization-
dc.subjectoxidation-
dc.subjectparticle size-
dc.subjectpH-
dc.subjectreduction (chemistry)-
dc.subjectsoil-
dc.subjectsurface property-
dc.subjectwalnut-
dc.subjectX ray diffraction-
dc.subjectzeta potential-
dc.subjectJuglans-
dc.titleStabilization of dissolvable biochar by soil minerals: Release reduction and organo-mineral complexes formation-
dc.typeArticle-
dc.contributor.affiliatedAuthorOk, Y.S.-
dc.identifier.doi10.1016/j.jhazmat.2021.125213-
dc.identifier.scopusid2-s2.0-85100054350-
dc.identifier.wosid000649730300009-
dc.identifier.bibliographicCitationJournal of Hazardous Materials, v.412-
dc.relation.isPartOfJournal of Hazardous Materials-
dc.citation.titleJournal of Hazardous Materials-
dc.citation.volume412-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.subject.keywordPlusBentonite-
dc.subject.keywordPlusBiodegradation-
dc.subject.keywordPlusChemical stability-
dc.subject.keywordPlusLigands-
dc.subject.keywordPlusParticle size-
dc.subject.keywordPlusVan der Waals forces-
dc.subject.keywordPlusBiodegradation extent-
dc.subject.keywordPlusCarbon sequestration-
dc.subject.keywordPlusChemical oxidation-
dc.subject.keywordPlusCrystalline minerals-
dc.subject.keywordPlusInterlayer spaces-
dc.subject.keywordPlusNegatively charged-
dc.subject.keywordPlusPositively charged-
dc.subject.keywordPlusVan der Waals attraction-
dc.subject.keywordPlusStabilization-
dc.subject.keywordPlusbentonite-
dc.subject.keywordPlusbiochar-
dc.subject.keywordPluscalcium ion-
dc.subject.keywordPluscharcoal-
dc.subject.keywordPlusdissolved organic matter-
dc.subject.keywordPlusferric hydroxide-
dc.subject.keywordPlusmineral-
dc.subject.keywordPlussoil organic matter-
dc.subject.keywordPlusunclassified drug-
dc.subject.keywordPlusbentonite-
dc.subject.keywordPlusbiochar-
dc.subject.keywordPlusbiodegradation-
dc.subject.keywordPluscalcium-
dc.subject.keywordPlusdecomposition-
dc.subject.keywordPlusdissolution-
dc.subject.keywordPlusdissolved matter-
dc.subject.keywordPlusgoethite-
dc.subject.keywordPlusligand-
dc.subject.keywordPlusoxidation-
dc.subject.keywordPlusparticle size-
dc.subject.keywordPlusphyllosilicate-
dc.subject.keywordPluspyrolysis-
dc.subject.keywordPlusreduction-
dc.subject.keywordPlusab initio calculation-
dc.subject.keywordPlusArticle-
dc.subject.keywordPlusbiodegradation-
dc.subject.keywordPluscarbon sequestration-
dc.subject.keywordPluscomplex formation-
dc.subject.keywordPluscrystallization-
dc.subject.keywordPlusflocculation-
dc.subject.keywordPlusmineralization-
dc.subject.keywordPlusoxidation-
dc.subject.keywordPlusparticle size-
dc.subject.keywordPluspH-
dc.subject.keywordPlusreduction (chemistry)-
dc.subject.keywordPlussoil-
dc.subject.keywordPlussurface property-
dc.subject.keywordPluswalnut-
dc.subject.keywordPlusX ray diffraction-
dc.subject.keywordPluszeta potential-
dc.subject.keywordPlusJuglans-
dc.subject.keywordAuthorBentonite-
dc.subject.keywordAuthorBiochar stability-
dc.subject.keywordAuthorCa2+ bridging-
dc.subject.keywordAuthorGoethite-
dc.subject.keywordAuthorIntercalated sorption-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Sciences and Biotechnology > Division of Environmental Science and Ecological Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE