Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Multiscale LSTM-Based Deep Learning for Very-Short-Term Photovoltaic Power Generation Forecasting in Smart City Energy Management

Full metadata record
DC Field Value Language
dc.contributor.authorKim, D.-
dc.contributor.authorKwon, D.-
dc.contributor.authorPark, L.-
dc.contributor.authorKim, J.-
dc.contributor.authorCho, S.-
dc.date.accessioned2021-12-03T14:41:28Z-
dc.date.available2021-12-03T14:41:28Z-
dc.date.created2021-08-31-
dc.date.issued2021-03-
dc.identifier.issn1932-8184-
dc.identifier.urihttps://scholar.korea.ac.kr/handle/2021.sw.korea/129139-
dc.description.abstractPhotovoltaic power generation forecasting (PVGF) is an attractive research topic for efficient energy management in smart city. In addition, the long short-term memory recurrent neural network (LSTM/RNN) has been actively utilized for predicting various time series tasks in recent years due to its outstanding ability to learn the feature of sequential time-series data. Although the existing forecasting models were obtained from learning the sequential PVGF data, it is observed that irregular factors made adverse effects on the forecasting results of very-short-term PVGF tasks, thus, the entire forecasting performance was deteriorated. In this regard, multiscale LSTM-based deep learning which is capable for forecasting very-short-term PVGF is proposed for efficient management. The model concatenates on two different scaled LSTM modules to overcome the deterioration that is originated from the irregular factors. Lastly, experimental results present the proposed framework can assist to forecast the tendency of PVGF amount steadily. © 2007-2012 IEEE.-
dc.languageEnglish-
dc.language.isoen-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleMultiscale LSTM-Based Deep Learning for Very-Short-Term Photovoltaic Power Generation Forecasting in Smart City Energy Management-
dc.typeArticle-
dc.contributor.affiliatedAuthorKim, J.-
dc.identifier.doi10.1109/JSYST.2020.3007184-
dc.identifier.scopusid2-s2.0-85098375822-
dc.identifier.wosid000628985900035-
dc.identifier.bibliographicCitationIEEE Systems Journal, v.15, no.1, pp.346 - 354-
dc.relation.isPartOfIEEE Systems Journal-
dc.citation.titleIEEE Systems Journal-
dc.citation.volume15-
dc.citation.number1-
dc.citation.startPage346-
dc.citation.endPage354-
dc.type.rimsART-
dc.type.docTypeArticle-
dc.description.journalClass1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaOperations Research & Management Science-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryOperations Research & Management Science-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.subject.keywordPlusNEURAL-NETWORKS-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordPlusMODEL-
dc.subject.keywordAuthorDeep learning-
dc.subject.keywordAuthorlong short-term memory (LSTM)-
dc.subject.keywordAuthorphotovoltaic power generation prediction-
dc.subject.keywordAuthorrenewable energy-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > School of Electrical Engineering > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Joong heon photo

Kim, Joong heon
공과대학 (전기전자공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE